SPLIT OR MONOBLOC

Condensing Unit (Centrifugal fan) Ductable Air Handling Unit

TECHNICAL GUIDE

Models SCOH - SIH/SICH (Sizes 076 to 240)

Heat pump R 22 refrigerant

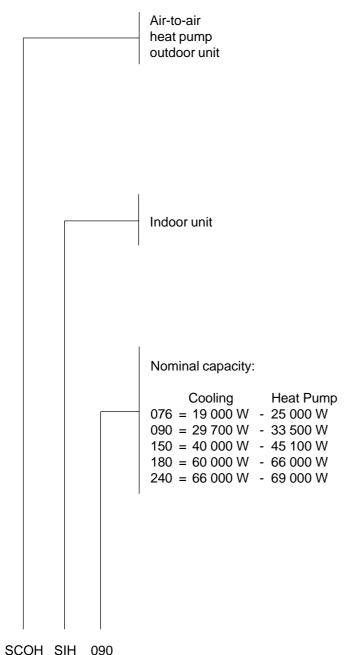
Index

	Page		Page
General	5	Operation	19
- General description	5	- Cooling cycle	19
- Nomenclature	5	- Heating cycle	19
- Control	5	- Operating sequences	19
- Control	3		21
		- Defrost cycle (timed)	
		- Operating at -15°C	21
Tachnical anasifications	-	- Operating with emergency heat	21
Technical specifications	5	- Other safety features of the electric circuit	21
Maskaniaskanasifiastiana	_	- Compressor crankcase heater	21
- Mechanical specifications	5	- Module	22
- Operating diagram	6	 Detail of internal connections to the PCB 	
- Physical data	7	connector	22
- Nominal features	8	 Processes initiated by state of the probes 	22
- Test conditions	8	 LED self-diagnosis indications 	23
- Correction factors	8	- Functions of the bridges (pins)	23
- Nominal flow-rates	8	- Before completing the installation	23
- Sensible cooling capacities	9 - 10	1 0	
- Outdoor fan performance	11		
- Indoor fan performance	11	Operating instructions	24
		- General introduction	24
		- Important warnings	24
Installation instructions	12	- Recommendations for better operation	24
		- Start up	24
- General	12	- DSL ambient thermostat	24
- Protection of the environment	12	- Operation and start up	25
- Warning signs	12	- Internal configuration of the thermostat	20
- Transport	12	(DSL 600 only)	27
- Location	12		27
- Clearances	13	- Display information	21
- Fixing the unit (Standing on the ground)	13		
- Air ducting	13	Maintenana	00
	13	Maintenance	28
- Orientation of the air intake and discharge			
- Charges to be made at the jobsite	13	- Indoor unit duct work	28
- Drainage connections	13	- Cleaning the filters	28
- Procedure for discharge transformation from		- Cleaning the outdoor coil	28
horizontal to vertical	14 - 15	 Priming the drainage trap 	28
 Compact installation of the units 	16	- Checking drive belt tension	28
 Installation of separated units 	16	- Access to the unit for maintenance	
		and servicing	28
Electrical installation	17	General dimensions	29 - 33
-		Centeral annensions	
- Electrical characteristics	18		
- Limits of use	18	Wiring diagrams	34 - 49
 Adjustment of the balance point 	18		
- Logic module	18		
- "Exterior" sensor	18		
- "Discharge" sensor + HP cutout	19	Optional accessories for heat pump	
- "Liquid" sensor	19	models SCOH/SIH	50
- Balance point	19		
- Start up delay	19	- Table of standard accessories	51
- Switching off indoor fan during defrost	19	- Hot water coil for SIH-076, 090 & 150	52
- Switch-off delay of the indoor fan	19	- Indoor electric heater for SIH-076, 090 & 150	53
- Miscellaneous	19	- Electric indoor heater for SIH-180	54
เขาเอบธาเฉบาธบนอ	19	Libertio indoor nearer for on 1-100	54

General

General description

Heat pump models SCOH/SIH are air-to-air units with centrifugal fans, in both the indoor and outdoor units.


The outdoor SCOH unit includes compressor, condenser, centrifugal fan and controls. The indoor SIH and SICH units include evaporator coil, filter and fan. If necessary, the standard format as delivered can easily be converted at the jobsite to compact format, except for the combination SCOH-240 + SICH-240 which should always be installed as split units.

The outdoor unit can be installed indoors or outdoors as it is protected to withstand exterior weather conditions, and its centrifugal fan makes it possible to fit ducting.

These systems are supplied fully equipped, factory tested, and designed to take electric heaters indoors or in the ducting. It is designed to achieve considerable energy savings and have a long working life.

Start-up and automatic temperature regulation are controlled through a 24-volt ambient thermostat.

Nomenclature

Control

To bring about maximum energy saving and proper operation of the equipment, avoiding breakdowns and ensuring long life. The SCOH/SIH heat pumps incorporate a patented electronic control module with micro-processor.

Its operation is concentrated mainly on control of the equipment during the heating stage which is, without a doubt, that which requires most rigorous control.

Balance point

As the heat pump functions by absorbing heat from the outside air, there may be times when the temperature of the latter is so low that it is not possible to extract sufficient heat from it to satisfy the heating demand. Therefore the control module incorporates six balance points (between -4°C and 14°C), one of which can be selected before start-up. On the outside air temperature reaching this point, the module automatically switches on the auxiliary electric heater, if necessary. The heat pump nevertheless continues functioning with a performance (COP) superior to that of the electric heaters, down to an outside temperature of -20°C.

Below this minimum temperature the heat pump switches off automatically, leaving the electric heaters to provide heating on their own. This prevents the compressor from operating at excessively high compression ratios, which could shorten the life of the equipment.

Safety measures for the compressor

A temperature sensor ensures protection of the compressor against excessively high discharge temperatures.

A cut-out device stops the compressor when the discharge pressure is too high. It also functions if there is insufficient air flow through the coils.

Defrost control

The defrost cycle begins after a period of time selectable between 30, 60 or 90 minutes has elapsed since the start-up or the last defrosting, and when the liquid line temperature has dropped to -5°C or less.

Start delay timer

It prevents frequent compressor starts. After stopping the compressor, it does not start again until 2 or 5 minutes, selectable, have elapsed.

Control panel

The complete control of the operation of the SCOH/SIH heat pumps is carried out through a specially designed thermostat governing the following functions:

- Control of the temperature required.
- 2.- Furnishing heating or cooling automatically, according to the requirement.
- Determining whether the indoor fan functions continuously, or intermittently in combination with the compressor.
- 4.- Switching on the electric heaters, disconnecting the compressor (s).

Technical specifications Mechanical specifications

Compressor

Of the vertical hermetic type, mounted on anti-vibration pads, specially designed for heat pump equipment, with rugged mechanical components and a high efficiency motor.

The SCOH-076 & 090 have only one compressor, whilst the

SCOH-150, 180 & 240 have two.

It is delivered with a charge of special anti-foam oil, resistant to heat.

Compressor heater

This is to keep the oil in the crankcase warm to facilitate startups and prevent the oil migrating out of the compressor.

Suction accumulator

Connected into the suction line of the compressor, it protects the compressor from liquid slugs which world damage the valvegear.

Coils

With a large surface area, comprising copper tubes and aluminium fins. Within the casing of the units, they are completely protected from damage during transportation or installation.

Outdoor fan (SCOH-180 & 240)

Of the centrifugal type and with direct drive motor.

Indoor fan (SIH-076)

A centrifugal fan is mounted with an independent motor and belt drive.

Indoor fan (SIH-090, 150, 180 + SICH-240) and outdoor (SCOH-076 & 090)

They feature two centrifugal fans on the same shaft, belt driven from the same motor, and connected to a single plenum.

Outdoor fan (SCOH-150)

This features two independent centrifugal fans and belt drive. Each one is driven by a separate motor, and they are connected to the same plenum.

These fans have sufficient pressure to take installation of ducts and optional accessories.

Cooling circuit

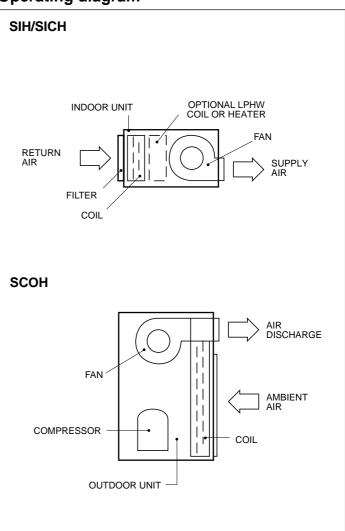
Made of brazad copper tubing, fitted with steel access connections at the high and low pressure sides.

Refrigerant

The SCOH and SIH units are supplied withcopper stubs ready for brazing. The refrigerant charging should be carried out completely at the jobsite. See, in the installation instructions, the section on refrigerant load.

Filler dryer

Induded in to the cooling circuit for protection of the refrigerant against moisture.


Casing

Made of aluminium-zinc sheet steel, stamped and enamelled with powder epoxy paint, permitting outdoor installation.

Supplementary heaters

Of the air-exposed wires type to provide rapid heat dispersion, overcoming the temperature inertia which can affect the components.

Operating diagram

Note: When assembling the SCOH/SIH-076, 090 or 150 in compact format, the general layout will be os shown above. For SCOH/SIH-180, the air flow direction etc. for SIH will be reversed. The SCOH/SICH-240 can not be assembled in compact format.

Physical data

Model				SCOH/SIH-076	SCOH/SIH-090	SCOH/SIH-150	SCOH/SIH-180	SCOH/SICH-240
	Quanti	ty		1	1	2	2	2
Com- pressor	Nomina	al power	kW	9.1	10	2 x 8.4	2 x 10.2	2 x 13.1
	Electric	al supply	V.ph.Hz	400.3.50	400.3.50	400.3.50	400.3.50	400.3.50
	Nomina	al capacity	W	950	1 472	1 472	2 240	3 000
	Electric	al supply	V.ph.Hz	400.3.50	400.3.50	400.3.50	400.3.50	400.3.50
Indoor fan	Motor	pm		1 400	1 400	1 400	1 400	1 400
			mm	320	320	320	320	380
			mm	320	240	320	320	380
			W	1 450	2 944	2 x 2 200	2 x 3 150	2 x 3 150
			V.ph.Hz	400.3.50	400.3.50	400.3.50	400.3.50	400.3.50
Outdoor fan	Motor	pm		1 400	1 400	1 400	960	960
	Turbines diameter		mm	270	320	320	380	380
	Turbine	Furbines width mm		270	320	320	380	380
	Quantity			1	1	1	1	1
Indoor coil	Tube re	ows x height		4 x 21	4 x 25	4 x 25	4 x 29	4 x 33
	Tube d	iameter		3/8"	3/8"	3/8"	3/8"	3/8"
	Quanti	ty		1	1	2	2	2
Outdoor coil	Tube re	ows x height		5 x 37	5 x 40	6 x 40	5 x 42	5 x 42
	Tube d	iameter		3/8"	3/8"	3/8"	3/8"	3/8"
	Nett	Outdoor unit	kg	325	395	545	545	551
Approx.	Neu	Indoor unit	kg	120	165	195	240	337
Weight	Gross	Outdoor unit	kg	360	445	603	585	591
	Gloss	Indoor unit	kg	142	195	230	330	427
Packaged	Height		mm	760	833	833	935	1 025
dimens. indoor	Width		mm	1 444	1 825	2 125	2 390	2 450
unit	Depth		mm	930	930	930	955	973
Packaged	Height		mm	1 404	1 534	1 534	1 720	1 720
dimens. outdoor	Width		mm	1 444	1 825	2 125	2 270	2 270
unit	Depth		mm	930	930	930	935	935

Nominal features

Outdoor unit	Indoor unit	Sui	mmer	W	Available pressure	
		Cooling capacity W	Consumption W	Heating capacity W	Consumption W	- indoor fan Pa
SCOH-076	SIH-076	19 000	10 300	25 000	9 300	62
SCOH-090	SIH-090	29 000	13 900	29 000	11 900	75
SCOH-150	SIH-150	40 000	20 600	48 000	18 800	75
SCOH-180	SIH-180	54 000	26 400	54 000	26 400	80
SCOH-240	SICH-240	66 000	31 300	69 000	27 100	80

Test conditions

			Sum	mer		Winter			
Voltage	Length of interconnection pipework	Outdoor temp. °C		Indoor temp. °C		Outdoor temp. °C		Indoor temp. °C	
pipework -	DB	WB	DB	WB	DB	WB	DB	WB	
400	7.5 mt	35	24	27	19	7	6	20	12
Note: W	Note: WB = Wet bulb, DB = Dry bulb.								

Correction factors

Correction factors for the cooling capacities

Correction factors for the cooling capacity for flow-rates different from nominal through the indoor coil.

% Flow	80	90	100	110	120	130
Total capacity	0.960	0.980	1	1.016	1.032	1.046
Sensitive capacity	0.945	0.973	1	1.038	1.075	1.118
Abs. comp. power	0.980	0.990	1	1.009	1.017	1.025

Correction of the actual temperature of the air entering the outdoor coil for flow-rates different from nominal.

% Flow	70	80	90	100	110	120	130
Correction in °C over the actual air intake temperature at the outdoor coil.	5	3	1.5	0	-1	-2	-2.5

Correction factors for the heating capacities

Indoor unit	Outdoor unit air intake temperature °C WB							
temperature °C DB	14	10	6	0	-8			
23	1.20	1.04	0.96	0.77	0.58			
20	1.25	1.10	1.00	0.80	0.69			
17	1.30	1.13	1.04	0.83	0.63			

Correction of the actual temperature of the air entering the outdoor coil for flow-rates different from nominal.

% Flow	70	80	90	100	110	120	130
Correction in °C over the actual air intake temperature at the outdoor coil.	-2	-1.5	-0.5	0	0.5	1	1.2

Nominal flow-rates

The cooling and heating capacities in the corresponding tables are valid for the following nominal flow rates.

Model	Indoor fan m³/h	Outdoor fan m³/h
SCOH/SIH-076	4 725	7 650
SCOH/SIH-090	7 500	13 300
SCOH/SIH-150	10 000	13 600
SCOH/SIH-180	12 560	19 000
SCOH/SICH-240	14 300	19 000

For other flow-rates, apply the correction factors from the corresponding tables.

Sensible cooling capacities

						Compressor			
Model	Temperature of air onto	Temperature of air onto	Total capacity	Tempe	Temperature of air onto evaporator coil °C (DB)				
Model	condenser coil °C (DB)	evaporator coil °C (WB)		22 24		27 29		— absorbed	
			W	W	W	W	W	kW	
		22	25 200	7 600	10 735	15 438	18 577	6.59	
	25	19.5	22 680	11 521	14 656	19 358	22 499	6.91	
		17	21 000	15 680	18 815	21 000	21 000	7.22	
		22	23 310	6 967	10 102	14 805	17 940	7.46	
SCOH/SIH-076	35	19.5	21 000	10 905	14 040	18 743	21 000	7.85	
		17	19 320	14 107	17 242	19 320	19 320	8.24	
		22	21 000	6 262	9 397	14 099	17 234	8.64	
	45	19.5	18 900	10 203	13 338	18 040	18 900	9.03	
		17	17 220	14 172	17 220	17 220	17 220	9.42	
	25	22	35 640	10 708	15 289	22 160	26 748	8.65	
		19.5	32 076	16 443	21 024	27 896	32 076	9.06	
		17	29 700	22 514	27 095	29 700	29 700	9.48	
	35	22	32 967	9 817	14 399	21 270	25 851	9.79	
SCOH/SIH-090		19.5	29 700	15 578	20 159	27 030	29 700	10.30	
		17	27 324	20 288	24 869	27 324	27 324	10.82	
		22	29 700	8 826	13 407	20 279	24 860	11.33	
	45	19.5	26 730	14 589	19 170	26 042	26 730	11.85	
		17	24 354	20 392	24 354	24 354	24 354	12.36	
		22	48 000	14 279	21 015	31 120	37 864	13.69	
	25	19.5	43 200	22 735	29 471	39 576	43 200	14.34	
		17	40 000	31 637	38 373	40 000	40 000	15.00	
		22	44 400	13 099	19 835	29 940	36 676	15.49	
SCOH/SIH-150	35	19.5	40 000	21 586	28 322	38 426	40 000	16.30	
		17	36 800	30 257	36 800	36 800	36 800	17.12	
		22	40 000	11 782	18 519	28 623	35 359	17.93	
	45	19.5	36 000	20 271	27 008	36 000	36 000	18.75	
		17	32 800	28 814	32 800	32 800	32 800	19.56	

Sensible cooling capacities

					Sensible ca	apacity (W)		
Model	Temperature of air onto	Temperature of air onto	Total capacity	Tempe	Compressor power absorbed			
Widdel	condenser coil °C (DB)	evaporator coil °C (WB)		22	24	27	29	aboorboa
		_	W	W	W	W	W	kW
		22	64 800	19 662	27 333	38 841	46 524	15.20
	25	19.5	58 320	29 237	36 909	48 417	56 102	15.93
		17	54 000	39 432	47 104	54 000	54 000	16.65
	35	22	59 940	18 017	25 689	37 197	44 869	17.20
SCOH/SIH-180		19.5	54 000	27 641	35 313	46 820	54 000	18.10
		17	49 680	35 362	43 034	49 680	49 680	19.01
	45	22	54 000	16 187	23 859	35 367	43 039	19.91
		19.5	48 600	25 819	33 491	44 999	48 600	20.82
		17	44 280	35 525	43 197	44 280	44 280	21.72
	25	22	79 200	24 230	33 019	46 203	55 005	17.05
		19.5	71 280	35 168	43 958	57 142	65 947	17.86
		17	66 000	46 873	55 663	66 000	66 000	18.68
		22	73 260	22 192	30 982	44 166	52 955	19.29
SCOH/SICH-240	35	19.5	66 000	33 193	41 983	55 167	63 956	20.30
		17	60 720	42 030	50 820	60 720	60 720	21.32
		22	66 000	19 928	28 717	41 901	50 691	22.33
	45	19.5	59 400	30 942	39 731	52 915	59 400	23.35
		17	54 120	42 048	50 837	54 120	54 120	24.36

Outdoor fan performance

Model	Static pre availat		Air f	low	Power absorbed	
_	mm WG	Pa	m³/h	m³/s	W	
	24.3	238.1	5 500	1.53	875	
_	22.4	219.5	6 000	1.66	960	
_	20.0	196.0	6 500	1.80	1 050	
_	17.0	166.6	7 000	1.94	1 150	
SCOH-076	14.0	137.2	7 500	2.08	1 280	
_	11.1	108.8	8 000	2.22	1 400	
_	7.0	68.6	8 500	2.36	1 530	
_	3.6	35.3	9 000	2.50	1 690	
_	0.0	0.0	9 500	2.64	1 840	
	22.5	220.5	9 280	2.58	1 480	
_	22.2	217.6	9 500	2.64	1 500	
_	20.6	201.9	10 000	2.78	1 680	
_	19.3	189.1	10 500	2.92	1 800	
_	18.1	177.4	11 000	3.05	1 940	
_	16.3	159.7	11 500	3.19	2 050	
SCOH-090	14.3	140.1	12 000	3.33	2 200	
	12.5	122.5	12 500	3.47	2 250	
_	10.7	104.8	13 000	3.61	2 490	
_	8.3	81.3	13 500	3.75	2 630	
	6.2	60.8	14 000	3.89	2 745	
-	3.4	33.3	14 500	4.03	2 980	
_	1.5	14.7	15 000	4.16	3 150	
_	0.0	0.0	15 200	4.22	3 240	
	22.5	220.5	10 000	2.78	1 800	
_	21.4	209.7	10 500	2.92	1 930	
_	19.8	194.0	11 000	3.05	2 050	
_	17.7	173.5	11 500	3.19	2 150	
_	15.7	153.9	12 000	3.33	2 320	
- _ SCOH-150	14.0	137.2	12 500	3.27	2 480	
_	12.0	117.6	13 000	3.61	2 660	
_	9.5	93.1	13 500	3.75	2 830	
_	7.3	71.5	14 000	3.88	3 000	
_	4.6	45.1	14 500	4.03	3 150	
_	1.3	12.7	15 000	4.16	3 320	
_	0.0	0.0	15 300	4.25	3 410	
_	12.0	117.6	14 286	3.97	5 892	
SCOH-180	8.0	78.4	16 424	4.56	6 070	
SCOH-240	4.0	39.2	19 092	2.36 1 530 2.50 1 690 2.64 1 840 2.58 1 480 2.64 1 500 2.78 1 680 2.92 1 800 3.05 1 940 3.19 2 050 3.33 2 200 3.47 2 250 3.61 2 490 3.75 2 630 3.89 2 745 4.03 2 980 4.16 3 150 4.22 3 240 2.78 1 800 2.92 1 930 3.05 2 050 3.19 2 150 3.33 2 320 3.27 2 480 3.61 2 660 3.75 2 830 3.88 3 000 4.03 3 150 4.16 3 320 4.25 3 410		
_	0.0	0.0	21 934	6.09	6.452	

Indoor fan performance

Model _	availab		Air f	low	Power absorbed		
	mm WG ⁽¹⁾	Pa	m³/h	m³/s	W		
	0	0	5 281	1.46	1 070		
	2	19.6	5 058	1.40	1 005		
	4	39.2	4 860	1.35	955		
_	5	49	4 723	1.31	920		
SIH-076	6	58.8	4 653	1.29	900		
_	8	78.4	4 399	1.22	840		
_	10	Pa m³/h m³/s W 0 5 281 1.46 1 070 19.6 5 058 1.40 1 005 39.2 4 860 1.35 955 49 4 723 1.31 920 58.8 4 653 1.29 900 78.4 4 399 1.22 840 98 4 130 1.14 785 117.6 3 885 1.07 740 137.2 3 577 0.99 680 167.6 5 250 1.46 650 161.7 5 500 1.53 690 149.0 6 000 1.66 770 133.3 6 500 1.80 850 112.7 7 000 1.94 950 98.0 7 500 2.08 1 050 65.7 8 000 2.22 1 100 35.3 8 500 2.36 1 210 9.8 9 000 2.55 1 375 175.4 7 000 1.94 896 167.6 7 500 2.08 970 156.8 8 000 2.22 1 004 137.2 8 500 2.36 1 100 130.3 9 000 2.50 1 175 118.6 9 500 2.64 1 275 98.0 10 000 2.78 1 375 83.3 10 500 2.92 1 450 63.7 11 000 3.05 1 600 42.1 11 500 3.19 1 700 19.6 12 000 3.33 1 802 0.0 12 500 3.47 1 970 155.8 11 500 3.19 2 004 139.1 12 000 3.33 2 139 123.4 12 500 3.47 1 970 155.8 11 500 3.19 2 004 139.1 12 000 3.33 2 139 123.4 12 500 3.47 2 240 107.8 13 000 3.61 2 408 84.2 13 500 3.75 2 535 63.7 14 000 3.89 2 732 38.2 14 500 4.02 2 843 12.7 15 000 4.16 3 000 0.0 15 200 4.22 3 150	785				
_	mm WG (1) Pa m³/h m³/s 0	740					
_	14	137.2	3 577	0.99	absorbed W 1 070 1 005 955 920 900 840 785 740 680 650 690 770 850 950 1 050 1 100 1 210 1 320 1 375 896 970 1 045 1 100 1 175 1 275 1 375 1 450 1 600 1 700 1 802 1 970 2 004 2 139 2 240 2 408 2 535 2 732 2 843 3 000 3 150		
	17.1	167.6	5 250	1.46	650		
_	16.5	161.7	5 500	1.53	690		
_	15.2	149.0	6 000	1.66	770		
_	13.6	133.3	6 500	1.80	850		
SIH-090 -	11.5	112.7	7 000	1.94	950		
-	10.0	98.0	7 500	2.08	1 050		
_			8 000				
_				2.36	absorbed W 46		
-							
-							
-							
-							
SIH-150 -							
							
-							
-							
-							
_							
-							
_	 -						
_							
SIH-180 -							
-							
_							
_							
_							
_	0.0	0.0	15 200	4.22	3 150		
		405	40.000		4.00=		
-	·						
-							
_							
SICH-240 _	13.4						
_	10.7						
_	7.4	73	15 000	4.16			
_	3.9	38	16 000	4.44			
	0	0	17 000	4.72	2 675		

Installation instructions

General

The SCOH/SIH model heat pumps are supplied in standard form as separate units. They are designed for installation with ducting on terraces, roof-tops, in lofts or basements.

When necessary, and at the point of installation, they can easily be joined together, forming a compact item of equipment, except for the combination SCOH/SICH-240 which should always be installed as split units.

Control for starting, stopping and temperature regulation is with a special 24-volt thermostat delivered in the outdoor unit of each set of equipment.

Protection of the environment Packing

Packing is made of recyclable material. The disposal of same should be carried out in accordance with the regulations on recycling established by the local authorities.

Disposal of the unit

When dismantling after a long service life, its components should be ecologically salvaged. The cooling circuit is charged with HCFC-22 refrigerant which should be recovered and, finally, returned to the gas manufacturer for recycling.

Oil will remain in the airtight compressor so, it will be returned along with the sealed circuit.

The air conditioning unit should be taken to wherever established by the local authorities for its recycling.

Warning signs

The following signs indicate the presence of potentially dangerous conditions for the users or service personnel.

Whenever found on the unit itself, keep in mind the warning indicated by each one.

This sign indicates an electrical risk or danger.

Attention: The unit has a remote control system and can start automatically. Two minutes prior to having access to the interior, the power supply should be disconnected so as to avoid any contact with the fan turbine in operation.

Attention: It is compulsory to read the instructions prior to any handling.

Attention: Do not touch the hot surfaces.

Attention: Pulley and belt transmission.

Attention: Possible escape of gas if incorrectly handled.

Transport

The outdoor unit must be transported in a vertical position so that the oil does not migrate from the compressor. If it is necessary, for some reason, to alter this position from time to time, it should be returned to the vertical position as soon as possible.

Location

The location should be chosen to provide for access for maintenance at all times, through both the side and end panels.

The exterior unit can be installed directly out of doors. If it is installed indoors, in basements, lofts, etc., air ducts for introducing air from outside and extraction must be connected.

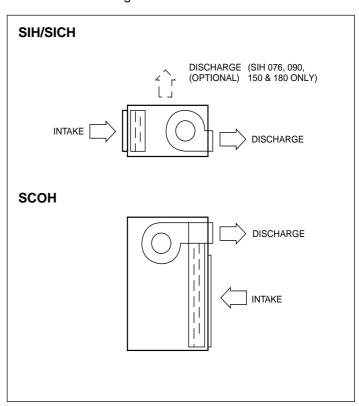
With indoor installations it must be remembered that, in the winter operating cycle, the outdoor coil condenses a lot of water which has to be eliminated through the drainage tube. Provision should be made for the possibility of obstruction of the drain by foreign bodies such as dust, dirt, etc.

Clearances

Clearances should be left in the installation of each apparatus for:

- a) Intake and discharge of air from the outdoor unit.
- b) Connection of the drainage and electrical tubes.
- c) Air ducts.
- d) Maintenance service.
- e) Electrical wiring.
- f) Cleaning the filters.

Fixing the unit (Standing on the ground)

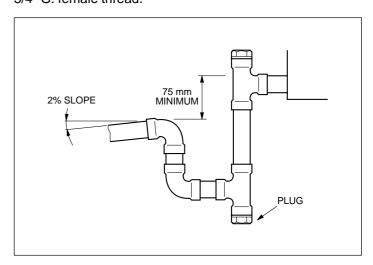

If the unit is stood out doors on the ground, it should be raised up on supports to avoid any possibility of snow obstructing the air intake.

Air ducting

- Connect the ducting, insulating it from the apparatus with a flexible coupling, preferably of non-combustible material, so as to prevent transmission of vibration from the apparatus itself. If the ducts are made of flexible material the vibration will not be transmitted.
- 2.- It is advisable to fit a damper on each section of the ducting to maintain a correct balance in the system.
- 3.- Provide easy access for cleaning and changing the air filters
- 4.- With the SCOH-150, 180 & 240 units, two independent ducts should be installed, one for each fan to the discharge, so as to avoid recirculation of air.
- 5.- If the air discharge of the outdoor coil is done through ducts, it is advisable that the first metre section be of galvanized sheet to avoid corrosion produced by water droplets carried by the air.

Orientation of the air intake and discharge

The standard orientations for air intake and discharge are as shown in the drawing.



Changes to be made at the jobsite

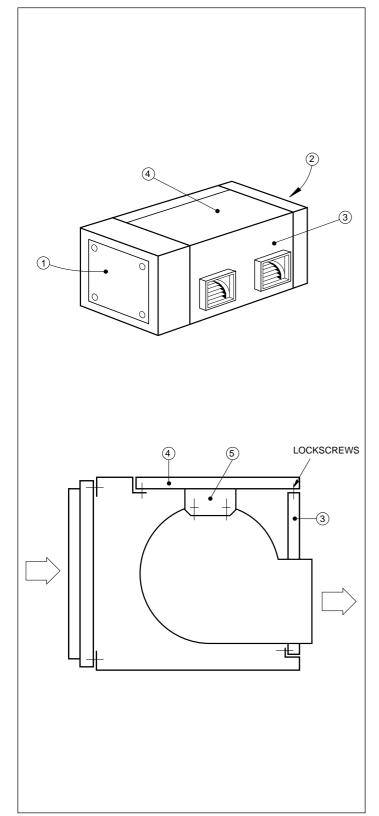
If required, the apparatus can easily be modified at the jobsite to give a vertical discharge from the indoor fan (SIH).

Drainage connections

Install the drainage tubes for each drain-pan through a trap. Leave a minimum level difference of 75 mm between the height of the connection to the apparatus and the line after the trap (see drawing). This is to avoid the depression produced by the fan, from interfering with the emptying of the pan. Access should be provided so that the trap can be filled with water at the beginning of each season. The drainage line should have a minimum slope of 2 cm per metre of length. The connections for the apparatus are of steel tubing with 3/4" G. female thread.

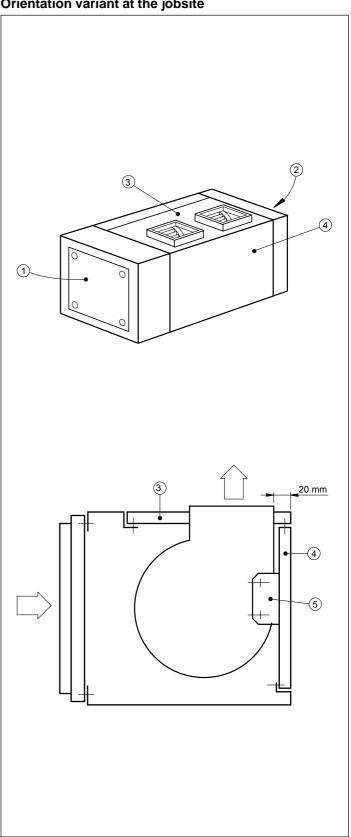
Attention:

When the heat pump operates at outdoor temperatures of less than 5°C, the drainage piping may be obstructed by ice.


To deal with this possibility it is best to install an electric heater in the drainage connection and around the anti-vibration elements of the compressor, connecting it electrically as indicated in the diagrams provided.

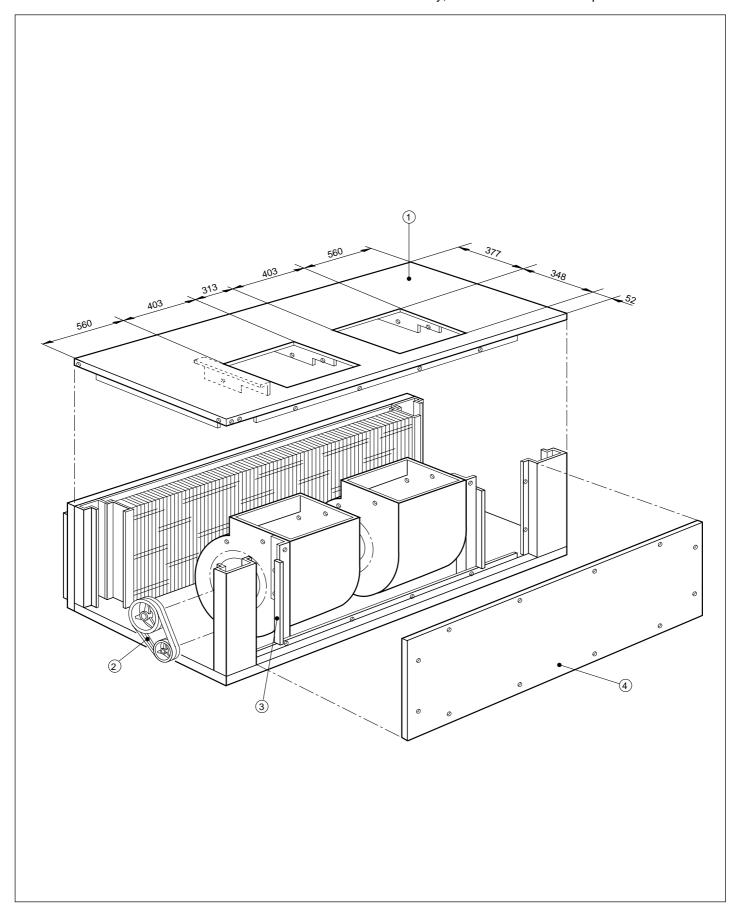
Procedure for discharge transformation from horizontal to vertical

(SIH-076, 090 & 150)


- 1.- Remove the screws from the side panels 1 & 2 of the upper unit.
- Take off side panels 1 & 2.

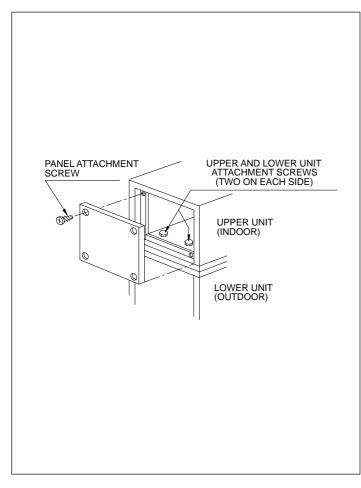
Standard orientation

- 3.- Loosen the screws attaching the fan motor to its base, and remove the vee belt.
- 4.- Through the side access, unscrew the panels 3 & 4, as shown in the standard orientation drawing.
- 5.- Unscrew the attachment of the fan to support 5.
- 6.- Place panel 3 where panel 4 was previously, and panel 4 where 3 was.
- 7.- Screw home the panels and the fan to support 5.
- 8.- Replace the vee belt and attach the motor to its base.
- 9.- Replace the side panels 1 & 2.


Orientation variant at the jobsite

SIH-180 Unit

The SIH-180 needs a transformation kit which includes: rear and upper panel, belts, motor and fan pulleys.


- 1.- Remove the standard upper, rear and side panels and the fans, and orient them as shown in the drawing, attaching them to the upper panel included in the transformation kit.
- 2.- Once the fans are installed, attach the upper panel Ref. 1 to the unit.
- 3.- Attach the left and right fan brackets, Ref. 3, to the unit.
- 4.- Install the motor pulleys, fan and belts, Ref. 2, included in the kit.
- 5.- Install the rear panel, Ref. 4.
- 6.- Finally, install the standard side panels.

Compact installation of the units

The units are supplied prepared for refrigerant and electrical connections.

To install the heat pumps as a compact unit, the outdoor SCOH and indoor SIH units must be joined by using the holes in each unit and the screws supplied in a bag in the electrical box in the case of SCOH/SIH-180 and inside the indoor units of SCOH/SIH-076, 090 & 150. The SCOH/SICH-240 cannot be assembled in compact format, and can only be installed in split format.

The SCOH/SIH units are supplied with the refrigerant circuit connections ready for brazing, and to be interconnected on the outside of the casing.

The SCOH/SIH-076 & 090 have only one circuit. The SCOH/SIH-150 &180 units have two circuits. The refrigerant charging should be carried out at the jobsite.

Installation of separated units Separation between the units

The length of interconnection tubing should be kept to a minimum.

Standard installation

The maximum admissible distances with the standard circuit and tube diameters are:

Total length	Maximum level
of tubing	difference between units
m	m
20	10

Special installation

For greater lengths, the installation must be made with a project previously approved by our technical service.

Modifications to any of the following may be required for such a project:

- Tube dimensions.
- Refrigerant charge.
- Suction traps.
- Suction accumulator.
- Liquid solenoid valve.
- Oil separator

In such cases, the maximum lengths which can be recommended are:

Type of installation		
Units at same level, maximum pipework length.	m	50
Outdoor unit higher than indoor, maximum pipework length and level difference.	m	50
Outdoor unit lower than indoor, maximum pipework length and level difference.	m	15

Cooling interconnections

When preparing the tubing to join the two units, special care should be taken to keep it clean and dry before the installation. The following recommendations serve as a guide which should be taken into consideration:

- 1.- Use only copper tubing of refrigeration quality.
- 2.- Do not carry out outdoor jobs in the rain.
- 3.- The ends of the tubes should be kept sealed during the installation.
- 4.- Do not leave the dryer filters or the compressor open to the elements for more than one or two minutes.
- 5.- For soldering, use low melting-point rods with a minimum silver content of 5%.
- 6.- During soldering, and for as long as the tube stays hot, keep up a flow of dry nitrogen to avoid formation of oxides and crusting in the interior, which could cause contamination and blockage.

Interconnection tubing diameters

Model	Diameter gas line (wide tube)	Diameter liquid line (narrow tube)		
SCOH/SIH-076 & 150	1 ¹ / ₈ " (28.5 mm)	1/2" (12.7 mm)		
SCOH/SIH-090, 180 & 240	1 70 (20.0 11111)	5/8" (15.87 mm)		

Refrigerant charge

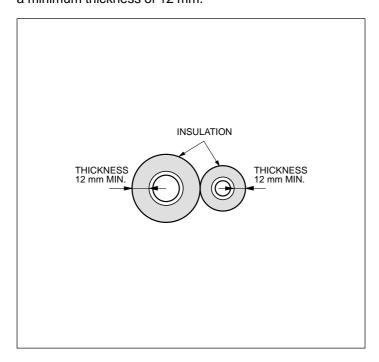
The nominal charge shown in the table below is calculated for the functioning of a compact unit.

When a split system is installed, the refrigerant charge must

be increased or reduced in each circuit depending on the length of liquid tubing +/- 7.5 metres.

Model	Nominal charge R-22 kg	Number of circuits	Diameter liquid line	Additional charge (per metre)
SCOH/SIH-076	10.9	1	1/2"(12.7mm)	104 grs.
SCOH/SIH-090	15.9	1	5/8"(15.87mm)	170 grs.
SCOH/SIH-150	9.9 x 2	2	1/2"(12.7mm)	104 grs.
SCOH/SIH-180 SCOH/SICH-240	9 x 2	2	5/8"(15.87mm)	170 grs.

Charge procedure


- 1.- Ensure that any brazing is done, with a dry nitrogen flow inside the pipework.
- 2.- Use low melting-point rods with a minimum silver content of 5% for brazing.
- 3.- Pressure with dry nitrogen to detect leaks.
- 4.- Blow off the dry nitrogen.
- 5.- Pull a vacuum down to 200 microns.
- 6.- Charge the refrigerant, using scales or a calibrated cylinder. The charge accuracy should be +/- 30 grams.

The outdoor unit is fitted with pressure and temperature points on the connection outlets, for checking of super heat and subcooling. Check that both these values are around 5°C. Complete a log of R22 charge added, operating temperatures and pressures, superheat, subcooling and current drawn by compressor(s) and fans.

Insulation of pipework

The interconnection cooling tubing must be insulated.

The insulation requires specific characteristics: it must be easy to install C, hard-wearing, water and fire-proof, and have a minimum thickness of 12 mm.

To avoid deterioration in sunlight, it is necessary to treat the insulation with suitable paint.

After having insulated the tubing, you must never attempt to bend it excessively as this could cause cracks or breakages.

Electrical installation

Each heat pump is delivered with a control box for connection to the electrical supply through a main switch with fuses or an MCB

The electric heater, if there is one, must be installed with powerfuses/MCB independent of those supplying the SCOH/SIH

In all cases, **established national regulations** must be observed.

Loose terminals can produce overheating of the cables or incorrect operation of the unit. A fire risk may also exist. Therefore you must make sure that all of the cables are firmly fightened.

Do not connect electricity to the unit or start it up until the piping and electrical connections to the external unit have been finalized. Make sure that the electrical supply has been correctly connected to the units as shown in the electrical diagrams.

Electrical characteristics

	Power sup	ply V.ph.Hz.			Nominal o	consumptio	on A			Power	
Model	Fan		Compressor		Indoor fan		Outdoor fan		supply cables min.cross section	Automatic circuit breaker	
	Compressor	Outdoor-Indoor	Start	Nominal	Max.	Start	Nominal	Start	Nominal	mm ²	А
SCOH/SIH-076	400.3.50	400.3.50	90	13.2	20	7	2	10	3	4	32
SCOH/SIH-090	400.3.50	400.3.50	100	16.5	19	10	2.7	25	3.8	10	50
SCOH/SIH-150	400.3.50	400.3.50	2 x 91	2 x 12.5	2 x 14.5	10	3.5	2 x 13	2 x 3.9	16	63
SCOH/SIH-180	400.3.50	400.3.50	2 x 100	2 x 16.5	2 x 19	25	7.1	2 x 18	2 x 5.8	25	100
SCOH/SIH-240	400.3.50	400.3.50	2 x 135	2 x 20.3	2 x 24	30	6.4	2 x 18	2 x 5.8	25/2.5	100/15

Important: The size of the circuit breaker and the cross-section of the supply and control lines are only as guide and should be corrected in accordance with the conditions at the jobsite, distance between units, and current legislation.

Limits of use

Voltage limits			utdoor coil inlet temperature DE			Indoor coil inlet air temperature				
Nom. 400 V			Operatii	erating cycle Operating cycle					:	
		Minimum °C		Maximum °C		Minimum °C		Maximum °C		
Minimum	Maximum	Cool	Heat	Cool	Heat	Cool WB	Heat DB	Cool WB	Heat DB	
342	436	19	-20 ₍₁₎	46	24	14	10 (2)	22	25	

Notes: WB - Wet bulb. DB - Dry bulb.

- (1) At an outdoor temperature of -20°C only the emergency electric heater (optional) continues to operate.
- (2) The equipment can work for a short period at a temperature of less than 10°C in order to raise the air temperature in the conditionedspace to 10°C.

Adjustment of the balance point

The balance point is the lowest outdoor temperature at which the output of the heat pump can satisfy the building load without additional electric heaters.

The balance point depends upon:

- 1) Outdoor design temperature.
- 2) Heat losses from the building.
- 3) Capacity of the heat pump.

The balance point is normally predetermined in the installation project. If it has not been predetermined, the factory setting of 6°C can be left.

Logic module

The logic module is the control centre for the heat pump. It responds to the demand signals from the DSL thermostat,

examines the information from the "exterior", "discharge" and "liquid" sensors, determining whether the heat pump and/or the supplementary heater should function.

"Exterior" sensor

This is a thermistor measuring the air temperature in the entry to the outdoor coil.

It controls the operation of the compressor, stopping it when the outdoor temperature reaches -15°C. This prevents the compressor from operating at a high compression ratio, which could damage it.

It also switches on the duct heater (optional) controlled by the 2nd stage of the ambient thermostat, if the exterior temperature drops below -15 $^{\circ}$ C.

Through the "balance point", it allows for adjustment of the

temperature at which the additional electric heater has to be switched on.

"Discharge" sensor + HP cutout

These are in the discharge pipe from the compressor, installed in series.

The compressor is protected against high operating temperatures and pressures.

The compressor will stop if the discharge temperature exceeds what is permitted, or if the pressure exceeds 28 kg/cm². They protect the compressor if there is a drop in refrigerant charge or a reduction in air flow-rate through the outdoor or indoor coils.

The compressor circuit may be reset after a lockout.

"Liquid" sensor

This is in the liquid line of the outdoor coil.

It begins the defrosting cycle after a period of 30, 60 or 90 minutes (as selected) has elapsed from the start-up or since the previous defrosting, when the temperature at the sensor drops to -5°C or less.

It stops the defrost cycle when the liquid temperature reaches 13°C or stays at a minimum of 7°C for over 5 minutes

It prevents defrost in mild climates when it does not detect a sufficiently low temperature.

The reading for the beginning of defrost of 30, 60 or 90 minutes is nominal. These periods are based on an outside temperature of 2°C, a highly unfavourable level which causes considerable frost formation.

At lower temperatures the overall humidity content of the ambient air is lower, making it possible to postpone the defrost cycles, thus saving energy. For example, at -10°C outside temperature, the reading times for the beginning of defrost will be 60, 90 & 120 minutes.

Balance point

It prevents functioning of the support system when the outside temperature is higher than the balance point as adjusted on the PCB. In this way, we stop heater operation as long as the heat pump is capable of satisfying the building's requirements. The balance point can be adjusted between 14°C and -4°C. This avoids the necessity of fitting an additional outside thermostat.

Start up delay

This delays the start-up for 5 or 2 minutes in order to prevent repeated starting cycles. It permits operating pressures to equalise before the compressor starts. If the thermostat or manipulation lead to incorrect contacts, the heat pump is not affected.

It delays starting up after a power cut, thus allowing the line voltage to return to normal levels.

Switching off indoor fan during defrost (for units with a single compressor)

This module provides the option of stopping the indoor fan during the defrost cycle. The option is only for cases where it is not possible to fit an auxiliary electric heater.

- With the JP-19 bridge in place (as sent out from the factory) the indoor fan will continue operating during defrost.
- With the JP-19 bridge open (jobsite modification) the indoor fan is switched off.

Switch-off delay of the indoor fan (for single compressor units)

The indoor fan will continue functioning for one minute more after the stop order.

This uses up the energy accumulated in the inside interchanger and saves energy.

This option can be deactivated at the jobsite, if preferred, by leaving the module JP-20 bridge open.

Miscellaneous.

- 12-way connector permitting connection of the service analyser.
- Connector for computer communications.
- Key or pin for over-riding the timer for testing.
- Possibility of reducing the timer to a 2-minute period.
- Forced defrost key for testing.
- LED for auto-diagnosis.

Operation

Cooling cycle

For cooling operation, the 4-way valve is energised.

The circuit followed by the refrigerant is shown in the relevant diagram.

Heating cycle

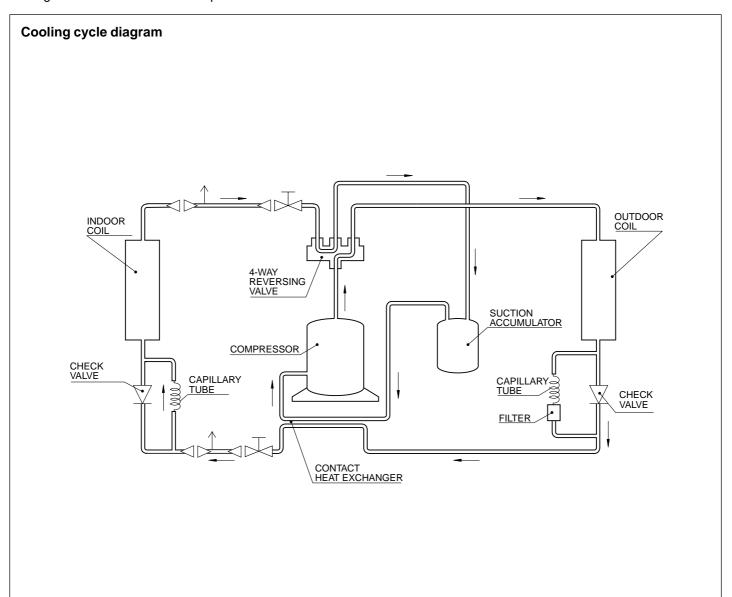
In the heating cycle, the discharge gas goes to the indoor coil, which acts as the condenser. The outdoor coil becomes the evaporator. The 4-way valve is not energised. The circuit followed by the refrigerant is shown in the relevant diagram.

Operating sequences (See relevant wiring diagrams)

Cooling cycle:

Thermostat in COOL position

- The 4-way valve is energised through the thermostat, permitting the refrigerant to circulate in the summer circuit
- 2) If the fan operating mode in the ambient thermostat is in FAN ON, the contactor is activated and the fan functions continuously.
- 3) With the logic module timing, the unit will start up after 5 minutes.
- 4) When the thermostat contact connects, the contactor is activated and the compressor starts up. If the fan operating mode is in the normal position, the contactor is activated through the thermostat's cooling circuit and the fan starts up.
- 5) The unit will function intermittently in response to the corresponding signal from the ambient thermostat to satisfy the cooling demand.
- 6) When the unit stops at the end of an operating cycle, or through a power failure, the logic module will not allow it to start up again until 5 minutes have elapsed.
- If the discharge pressure exceeds 28 kg/cm², or the discharge temperature is over 130°C, the logic module will switch off the unit, leaving the system in lockout.
- 8) To reset after a lock-out, turn off the power supply to the unit. The system will re-set and the unit will start up after 5 minutes.


Heating cycle:

Thermostat in HEAT position

1) The 4-way valve is de energised, into the position

- for the heating circuit, which means that the indoor coil acts as condenser and the outdoor one as evaporator.
- 2) If the fan operating mode in the ambient thermostat is in the FAN ON position, the contactor is activated and the fan functions continuously.
- 3) With the logic module timing, the unit will start up after 5 minutes.
- 4) When the first stage of the thermostat connects, the contactor is activated and the compressor starts up. If the operating mode of the fan is "normal", the contactor is activated through the thermostat's heating circuit and the fan starts up.
- 5) The unit will function intermittently in response to the appropriate inputs from the ambient thermostat to satisfy the demand for heating.
- 6) If the unit stops, after an operating cycle, or through a power failure, the logic module will not allow it to start up again until 5 minutes have elapsed.

- If the discharge pressure exceeds 28 kg/cm², or the discharge temperature is over 130°C, the logic module will stop the unit, leaving the system in lockout.
- 8) To re-set after a lock-out, switch off the power to the unit. The system will re-set and the unit start up after 5 minutes.
- 9) The auxiliary heater is activated when the auxiliary heating stage of the thermostat is connected. The logic module allows the indoor auxiliary heater to function if the outdoor temperature is below the balance point. If the outdoor temperature is above that set as the balance point, the indoor heater does not function.
- 10) The emergency heater (accessory) is connected when the outdoor temperature is lower than that preset as the operating limit (-15°C, logic module), and the ambient thermostat demands the second heating stage.

Note

The SCOH/SIH-150, 180 & SCOH/SICH-240 units have 2 independent circuits with similar characteristics. The diagram shows the circuit followed by the refrigerant in one of them.

Heating cycle diagram OUTDOOR INDOOR COII REVERSING VALVE SUCTION ACCUMULATOR COMPRESSOR CHECK CAPILLARY TUBE VALVE CAPILLARY CHECK VALVE **FII TFR** CONTACT HEAT EXCHANGER

Note:

The SCOH/SIH-150, 180 & SCOH/SICH-240 units have 2 independent circuits with similar characteristics. The diagram shows the circuit followed by the refrigerant in one of them.

Defrost cycle (timed)

The ice which is produced on the outdoor coil during the heating cycle must be eliminated when it begins to block the coil.

The defrost cycle begins after a period selected between 30, 60 & 90 minutes from the start-up or the last defrosting, and when the evaporation temperature drops to -5°C or less.

The logic module activates the defrost relay, which:

- Activates the 4-way valve to go into the cooling cycle.
- Switches off the outdoor fan.

The defrost cycle finishes when the liquid temperature readres 13°C, measured by a thermistor; or when, if it does not heat up, it reaches a minimum of 7°C for a 5 minute period; also after 12 minutes from its beginning.

When the defrost cycle finishes, the logic module disconnects the defrost relay, enabling normal operation of the heating cycle. If the unit tries to go into another defrost cycle in less than 5 minutes, the logic module switches it off, leaving the system in lock-out.

Operating at -15°C (optionally -5, -10, -20)

When the outdoor temperature is less than -15°C there is no justification for running the compressor with the limited amount of heat it generates.

If the logic module detects, through a thermistor in the exterior air entry, a temperature lower than -15°C, it acts as follows:

- It disconnects the compressor.
- It switches on the emergency heater (if there is one installed) controlled by the thermostat's second stage. (The auxiliary heater will also continue to function, governed by the thermostat's second stage).
- It leaves the indoor fan functioning under the first heating stage of the thermostat.

Operating with emergency heat

When the operating mode of the thermostat is in the emergency heat position (flashing HEAT signal on the display):

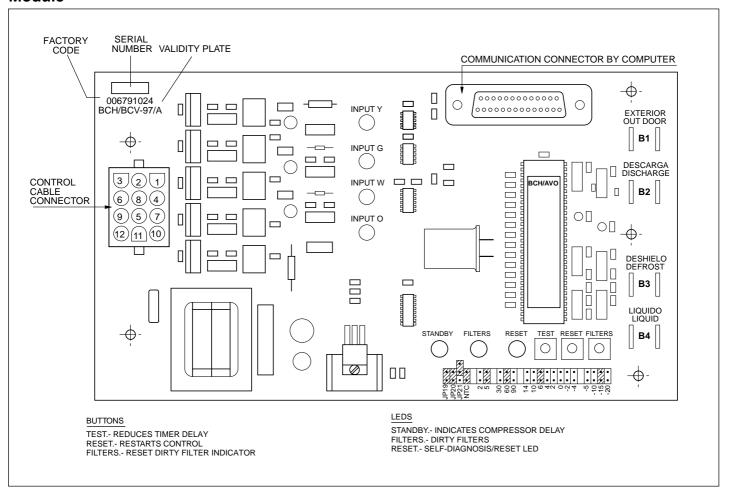
- The compressor will be in lock-out.
- The auxiliary and emergency heaters (if installed) will be governed by the first stage of the thermostat.

Note

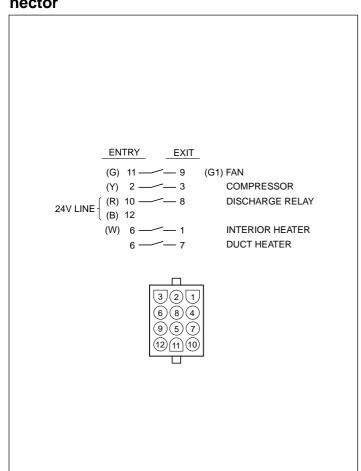
With the SIH-150, the auxiliary heater is the indoor one and the emergency one is the second supplementary one in the ducting.

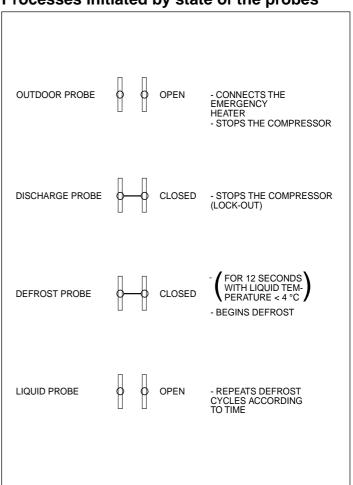
Other safety features of the electric circuit

- The 3-phase fans have manual re-set protection by overload relay.
- The overload protects against failure of a phase. Re-setting is manual.
- The compressor is protected against overheating by a solid state protector with three sensors within the windings. This also protects it against failure of a phase.
- The control circuit is protected by a fuse.
- A system of relays prevents the simultaneous function of the defrost system in both the SCOH-150, 180 & 240 circuits.
- The casing and components, as a whole, are protected by an earthing circuit.

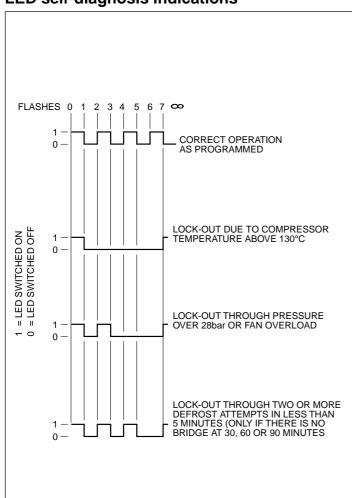

Compressor crankcase heater

The compressor is fitted with a heater around the crankcase to prevent an excessive concentration of refrigerant in the compressor oil when it is switched off.

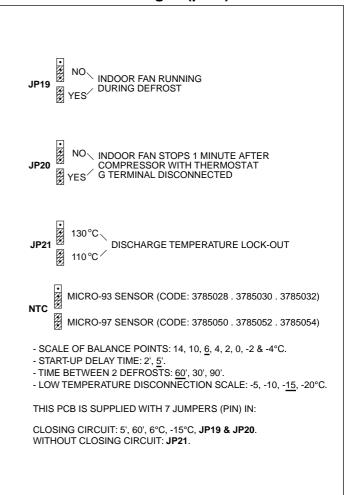

If the power has been turned off for some time, before starting up the heat pump the power must have been on again for at least 8 hours.


This is to allow for refrigerant accumulated in the compressor to be evaporated.

Module



Detail of internal connections to the PCB con- Processes initiated by state of the probes nector



LED self-diagnosis indications

Functions of the bridges (pins)

Before completing the installation

Verify that:

- The voltage is always between 198-254 V or 342-436 V.
- The gauge of the supply cable is at least that which is recommended in the corresponding electrical diagrams.

 The need to clean the air filter has been outhned to the user.

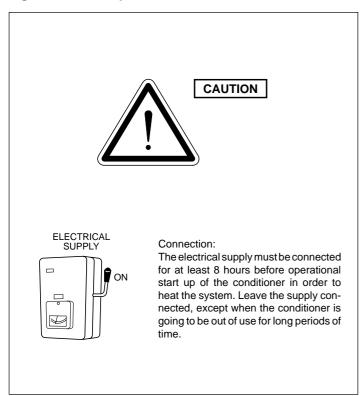
 The condensation drainage is perfectly assembled and their are no leaks in the water circuit.

 Instructions have been given to the users on how to operate the system.

- The guarantee form has been filled in.
- Maintenance instructions have been given or a contract has been made for periodic servicing.

Operating instructions

General introduction


The heat pump is an air to air unit that provides air conditioning in summer and heating in winter by reversing its operation

The start and automatic temperature regulation are done by means of the DSL room thermostat specially designed for these units.

Important warnings

The thermostat must be located on a wall which is not exposed to direct sunlight; should this not be the case, the temperatures would not be real and the operation of the heat pump would be erratic. Before start-up, turn on the main switch so that the electric heater in the compressor crankease begins to operate.

The compressor must not be started up until at least eight hours have passed.

This is to allow any liquid refrigerant that has mixed with the compressor oil, to evaporate.

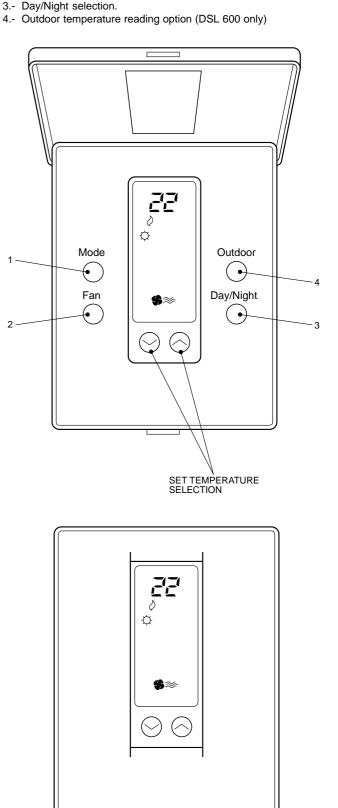
The heat pump is fitted with a safety device for the protection of the compressor which prevents it from being switched on again immediately after a shut down; five minutes must have elapsed between the shut down and the next start up.

Recommendations for better operation

- Turn the system on before the room gets hot. The heat accumulated on furniture, walls, etc. means the system take longer to achieve the desired temperature.
- It is advisable to inspect and service your unit in the spring; this avoids problems and ensures a long service of your equipment.

Start up

After connecting up the unit, taking into account the specifications outlined in the previous sections, we can proceed to the start up, which is made by means of the DSL ambient thermostat.


DSL ambient thermostat

SCOH/SIH-076 & 090 units use the DSL 610 thermostat SCOH/SIH/SICH-150, 180 & 240 units use the DSL 600 thermostat.

These thermostats has been designed to precisely control of the ambient temperature and to give graphic information of

Controls and indicators

- 1.- Operational mode selection.
- 2.- Fan speed selection.
- 3.- Day/Night selection.

the mode in which the heat pump is operating. It is a control with a Proportional-Differential-Integral response which, in relation to the difference between the programmed and the ambient temperatures, varies the on/off cycles between 3 and 7.5 cycles per hour.

The liquid crystal display (LCD) normally indicates the ambient temperature, mode of operation, and whether the heating or cooling system is connected.

It allows the selection of different set points for heating and cooling, as well as the indoor choice of °C or °F.

The operation of the fan can be set in continuous mode, or automatic, switching off and operating in unison with the compressor.

The controls are located underneath a cover which deters tampering by unauthorised personnel.

Operation and start up

Start up is implemented by the controls located on the thermostat.

1. MODE

The operational mode of the heat pump is selected by pressing this button. When the button is pressed the following operational modes appear on the liquid crystal display panel:

 Controls the system in the cooling mode. (The word LILL is shown on the display for 5 seconds).

HERE ()

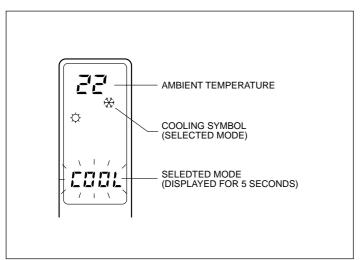
Controls the system in the heating mode.
 (The word HERL is shown on the display for 5 seconds).

Auto 🔆 🗸

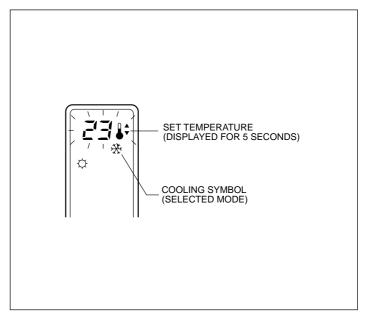
- Controls the system in cooling or heating according to requirements. (The word **Fuls** is shown on the display for 5 seconds).

E HE

 Controls the system in the emergency heating mode (only active if the optional accessory electrical resistance heater has been installed).


OFF

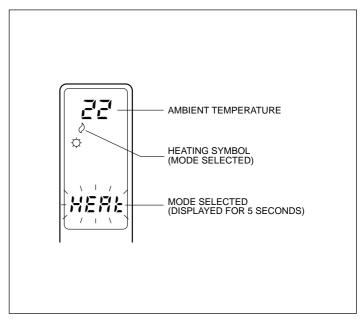
- Disconnects the system.


a) Cooling

Press the MODE button repeatedly until the cooling symbol $\stackrel{\text{the}}{\longrightarrow}$ is shown on the display (at the same time the word LDDL is displayed for 5 seconds).

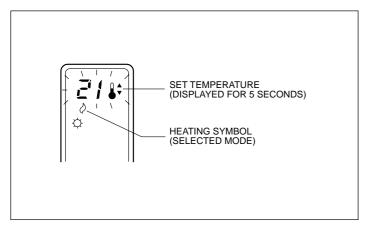
The cooling symbol continues to be displayed on the panel.

Once the operational mode has been selected, select the set temperature by pressing button \bigcirc or button \bigcirc , whether this be to select a higher or a lower temperature. The set temperature is displayed accompanied by a small symbol which represents a thermometer, and remains visible on the display panel for 5 seconds. Once the set temperature will again be displayed.



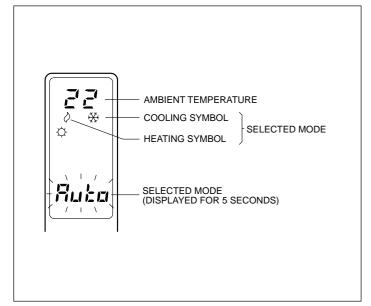
After a few minutes have passed the cooling system will start up, and the cooling symbol, shown on the display, will start to flash.

b) Heating


Press the MODE button repeatedly until the heating symbol \lozenge is displayed on the panel (at the same time the word HERL is displayed for 5 seconds).

The heating symbol continues to be displayed on the panel.

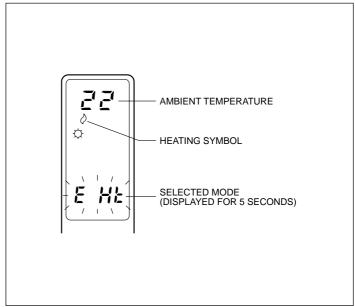
Once the operational mode has been selected, continue to select the set temperature by pressing button \bigcirc or button \bigcirc , whether this be to select a higher or a lower temperature. The set temperature is displayed together with a small symbol which represents a thermometer, which is displayed on the panel for 5 seconds. After the set tem-


perature has disappeared then the ambient temperature will again be displayed.

After a few minutes have passed the heating system will start up, and the heating symbol, visible on the display, will start to flash.

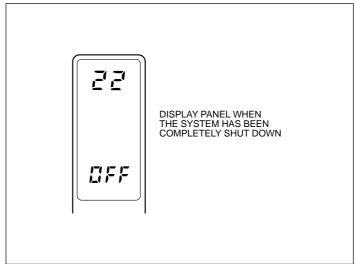
c) Automatic

Select a set temperature for the cooling mode and another for the heating mode, as described in paragraphs a) and b). In this operational mode the set temperature for cooling <code>FDDL</code> must be at least 1°C above the heating <code>HERL</code> temperature, this is the minimum differential allowed by the thermostat. Press the MODE button repeatedly until the heating symbol \lozenge and cooling symbol $\stackrel{*}{\bowtie}$ are displayed on the panel (at the same time the word <code>Rule</code> will be displayed for 5 seconds). The heating and cooling symbols will continue to be displayed on the panel.


After a few minutes have passed the system will start up, automatically switching to the heating or cooling mode and maintaining the temperature between the selected margins. The symbol corresponding to the operational mode, heating or cooling, will start to flash.

d) Emergency heating

Repeatedly press the MODE button until the letters **E H!** (displayed for 5 seconds) appears on the display panel, at the same time the heating symbol \lozenge will be displayed; once a few minutes have passed the emer-

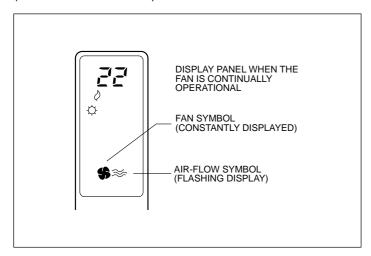

gency heating will start up, and the heating symbol \lozenge will start to flash.

In this operational mode the compressor is always shut down and the (optional) auxiliary and emergency resistance heaters, if they are fitted, are used to supply the heat. This operational mode can also be used for heating in case of a compressor breakdown.

e) Off

Repeatedly press the MODE button until the word **TFF** appears on the display. The heat pump will stop and on the thermostat display panel the word **TFF** and the ambient temperature will be permanently displayed.

f) °C / °F scale

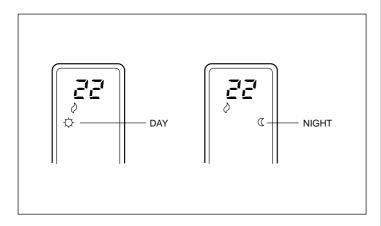

To change the scale of degrees of temperature, press the \bigcirc and \bigcirc buttons simultaneously.

2.- Fan

The indoor unit fan is started up in a continuous manner by pressing the FAN button (independently of the operational state of the unit), the fan and air-flow symbols will be displayed on the thermostat display panel, the fan symbol steadily and the flow symbol flashing.

The FAN symbol will disappear when the button is pressed again and the fan will be automatically controlled in

unison with the compressor or the electrical resistance heater (should this be installed).



3.- Day/night selection

Different set temperatures can be selected by pressing the DAY/NIGHT button, for day and night (in each of the operational modes).

When installing the thermostat the \circlearrowleft symbol will be displayed, indicating that the temperature selected is set for the day. By pressing the DAY/NIGHT button the \circlearrowleft symbol is displayed on the panel, indicating that the temperature selected will be set for the night.

Every time that we press this button we alternate the established set temperatures, whether they be for the day \circlearrowleft or the night \circlearrowleft .

4.- Outdoor temperature reading option (DSL 600 only)

The thermostat allows for the option of installing a sensor for taking readings of the outdoor temperature. This temperature can be read off by pressing the OUTDOOR button.

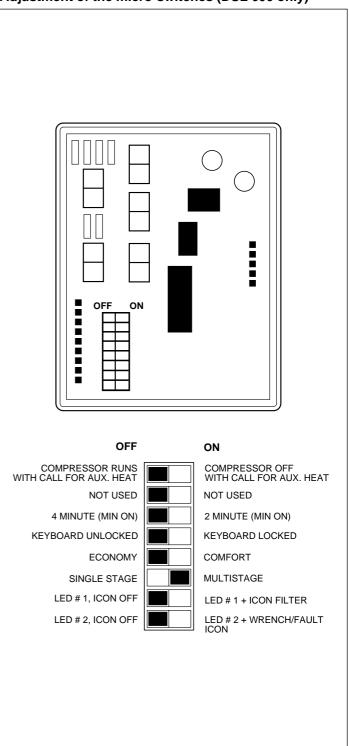
Remote temperature sensor option (DSL 600 only)

The DSL 600 thermostat has been designed to accept a remote sensor which allows for control of the ambient temperature for premises separated from the room where the DSL thermostat is installed. The remote sensor is connected to the RS1-RS2-RS+V, terminal strip inside the thermostat.

LED 1 option (DSL 600 thermostat only)

The thermostat has an LED which if it is supplied with 24 VAC (through an exterior timer or P.D. switch) can warn of the need to clean the filters.

LED 2 option (DSL 600 thermostat only)


The thermostat has a second LED which, if supplied at 24 VAC, can be used as an alarm monitor.

Internal configuration of the thermostat (DSL 600 only)

The thermostat has a configuration system (option) by means of micro-swiches located on the base board.

The standard configuration of the thermostat must be that which is described in the following section.

Adjustment of the micro-switches (DSL 600 only)

Display information

The display panel permanently provides us with information concerning: the ambient temperature, operational mode, day/night, and fan operation. To receive information concerning the set temperatures it is only necessary to press one of the temperature selection buttons once, and the established set temperature for the operational mode which is being displayed at that time will appear on the panel for 5 seconds.

Maintenance

Clean the casing with a vacuum cleaner or a cloth moistened in a mild liquid detergent.

Do not use water to clean the indoor unit. Water may damage the internal components and cause electrical discharges.

Indoor unit duct work

The indoor unit connections, intended for ducts, are supplied without a protective grill. When maintenance work is being done this must be taken into account.

In cases of an restricted outflow installations for an indoor unit intended for ducting, the outlet opening must be protected with a grill. Failure to fit this protection could result in damage being caused by the fan turbine.

Cleaning the filters

Keep the air filters in good condition, servicing them at least once a month. If the filters are dirty they will reduce the air-flow and the performance of the unit.

Cleaning the outdoor coil

Dirt must not be allowed to accumulate on the outdoor coil. This must be cleaned as often as necessary with a brush, vacuum cleaner or detergent.

For safety reasons make sure to switch off the air-conditioner, and to disconnect it from the mains before cleaning.

Check the outdoor unit periodically to see whether either the outlet or the inlet are blocked up with dirt or leaves, etc.

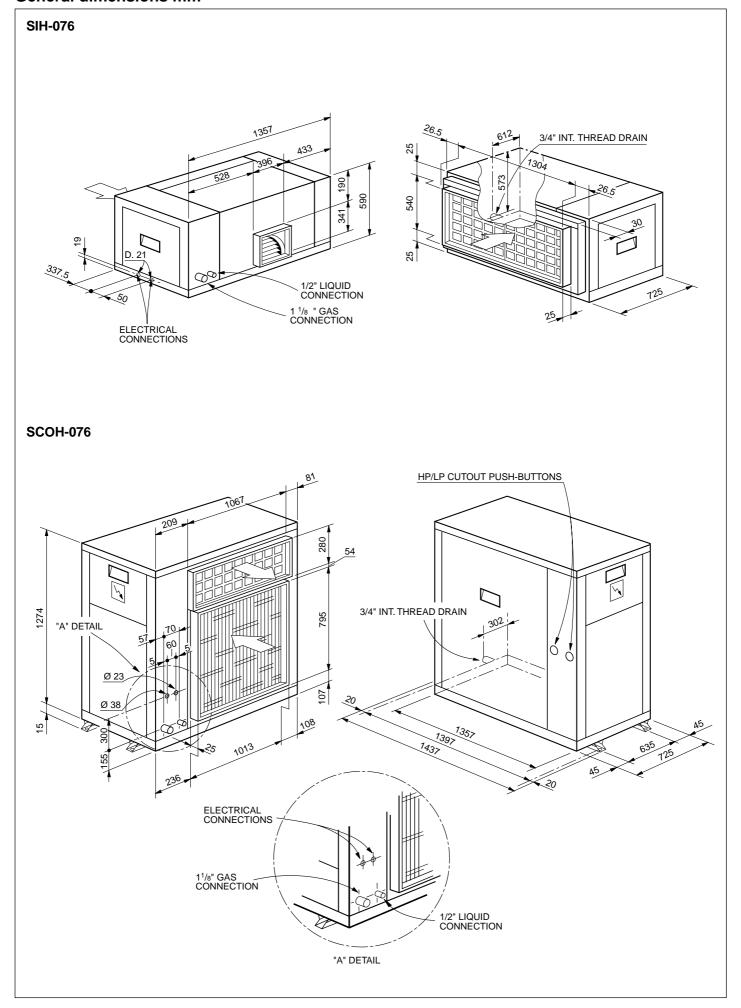
The internal coil and other components of the outdoor unit must also be periodically cleaned. Contact your concessionary or maintenance service.

Priming the drainage trap

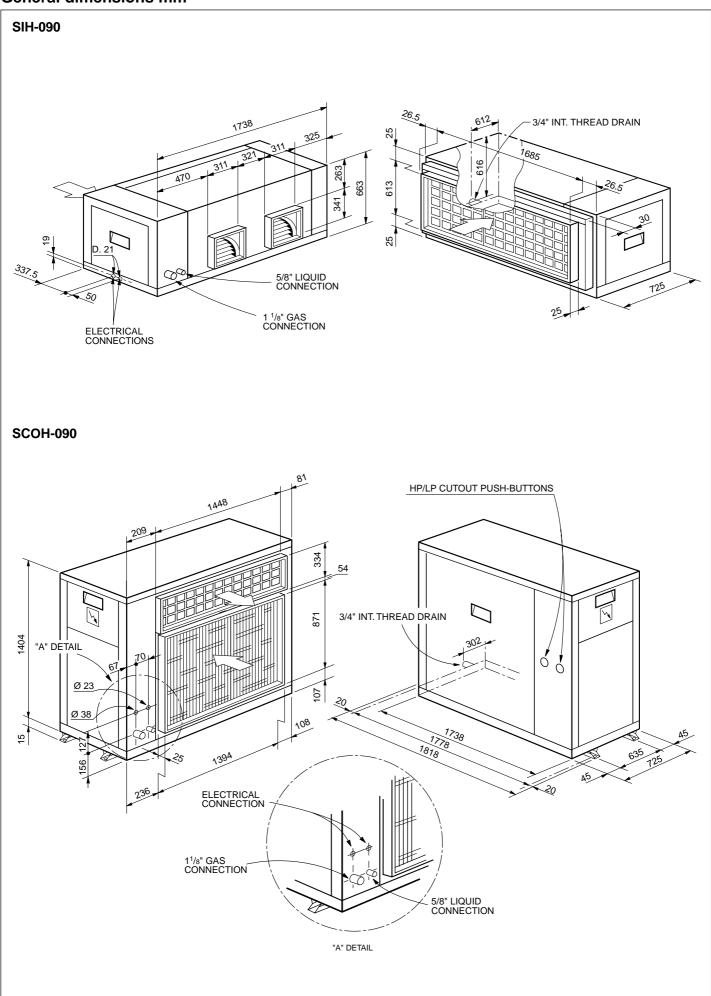
To avoid problems with water from condensation we recommend that the drainage trap be primed when start-ing up and before the beginning of each season so as to avoid, from the very beginning, the intake of air into this pipe.

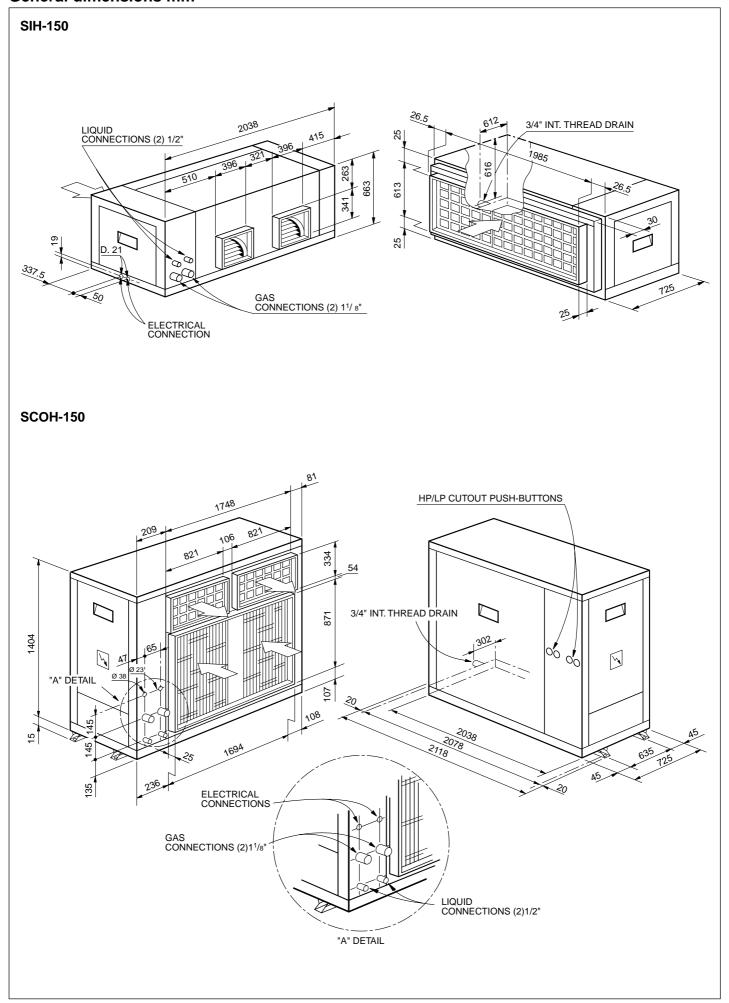
Checking drive belt tension

Periodically the tension and wear on the drive belts of the fan motor must be checked, and if necessary they must be changed. Before making the check isolate the mains supply.

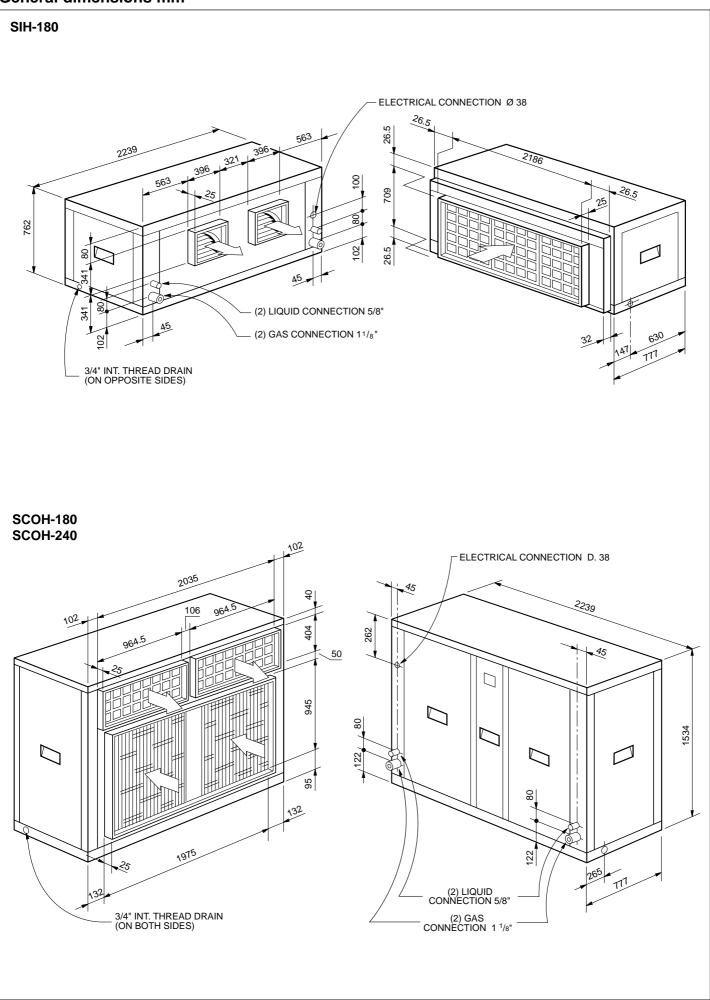


For safety reasons make sure that you switch off the air-conditioner, also disconnecting it from the mains supply, before checking the fan motor drive belts.

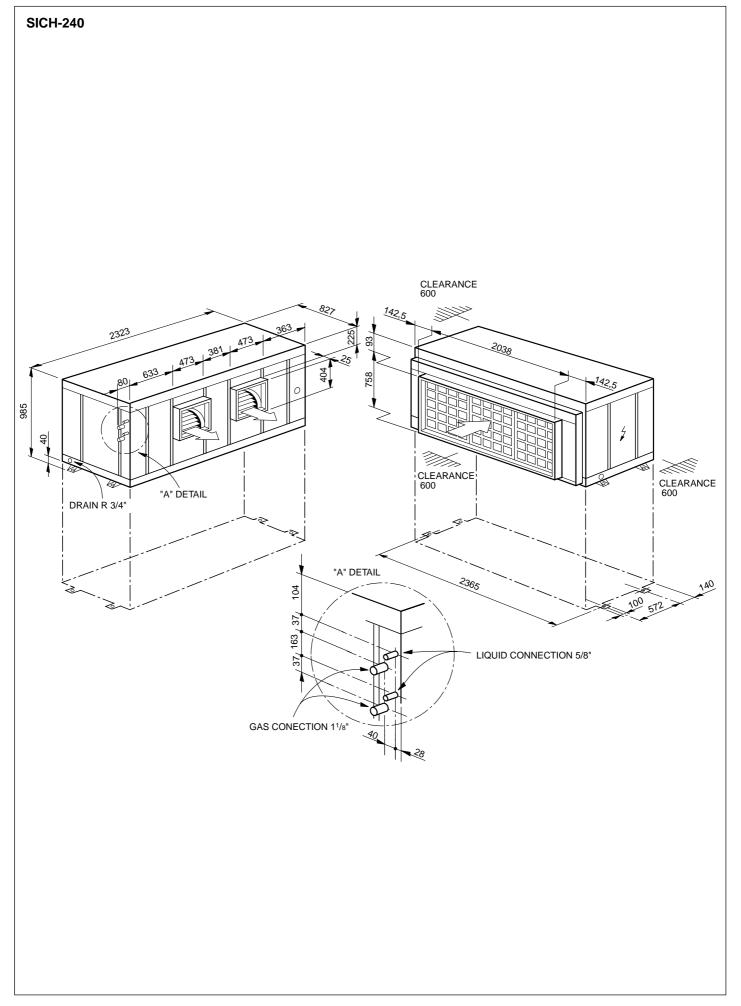

Access to the unit for maintenance and servicing

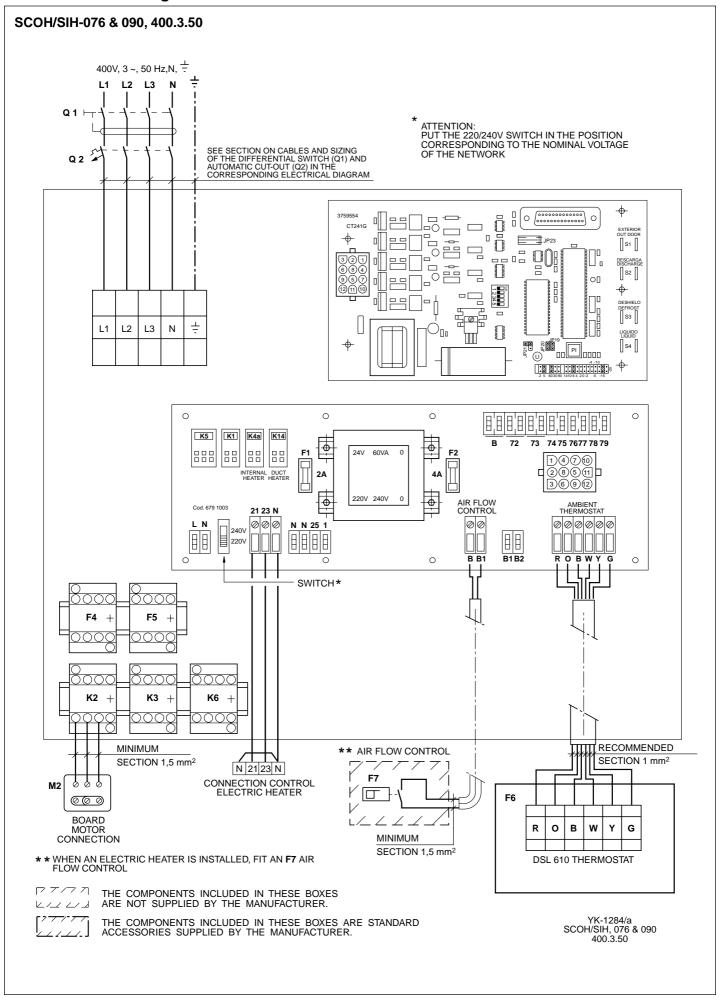


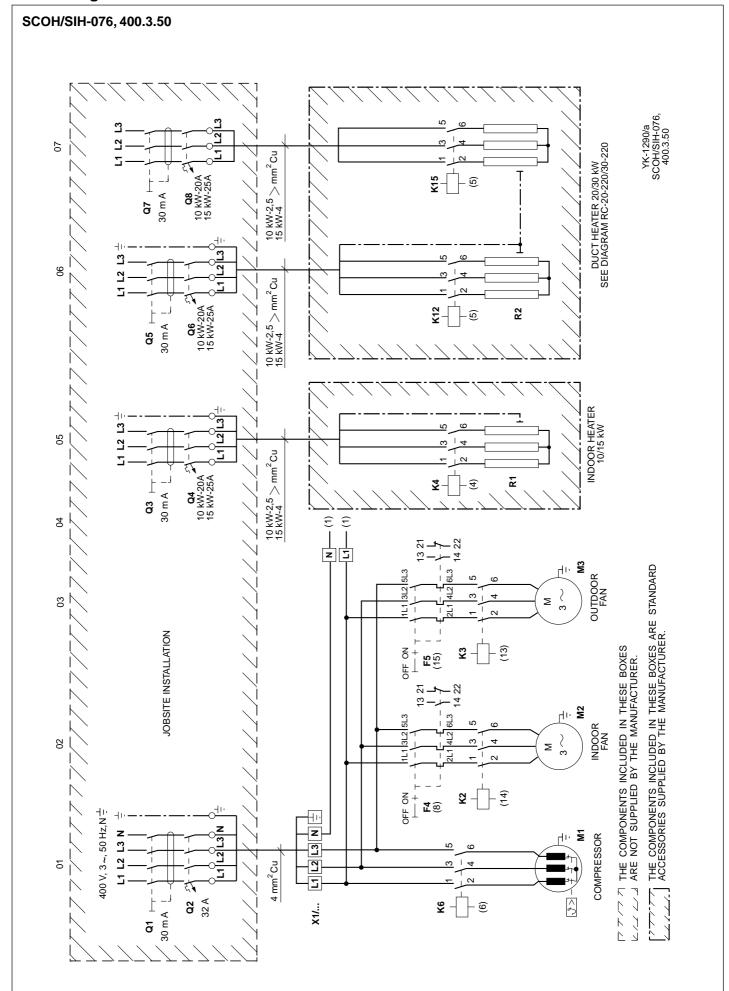
Attention: The unit has a remote control system and can start automatically. Two minutes prior to having access to the interior, the power supply should be disconnected so as to avoid any contact with the fan turbine in operation.

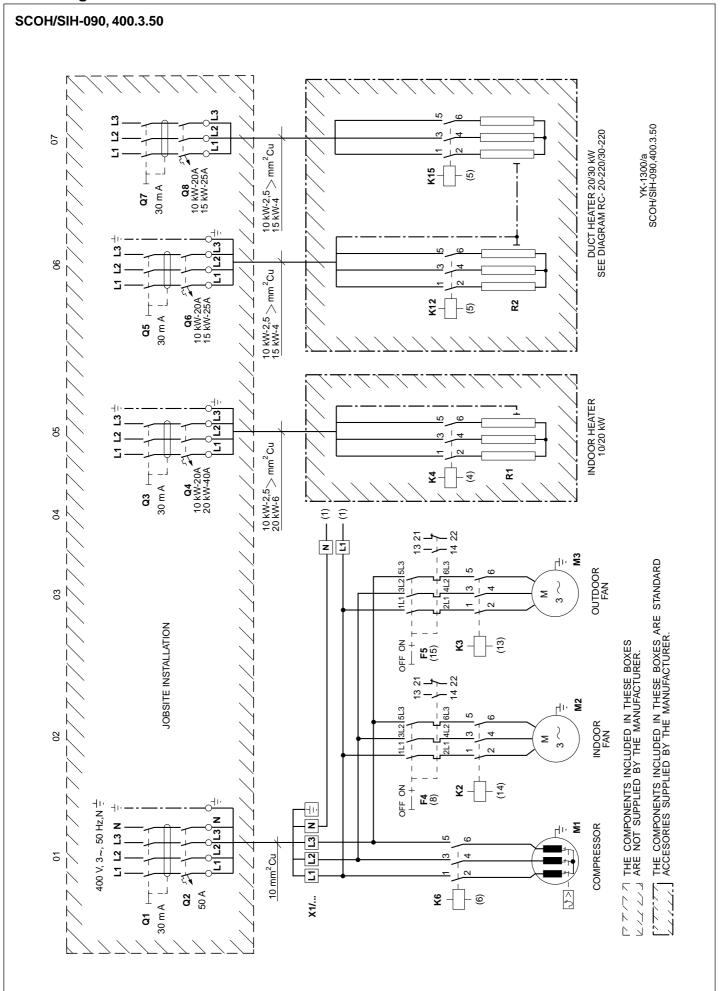


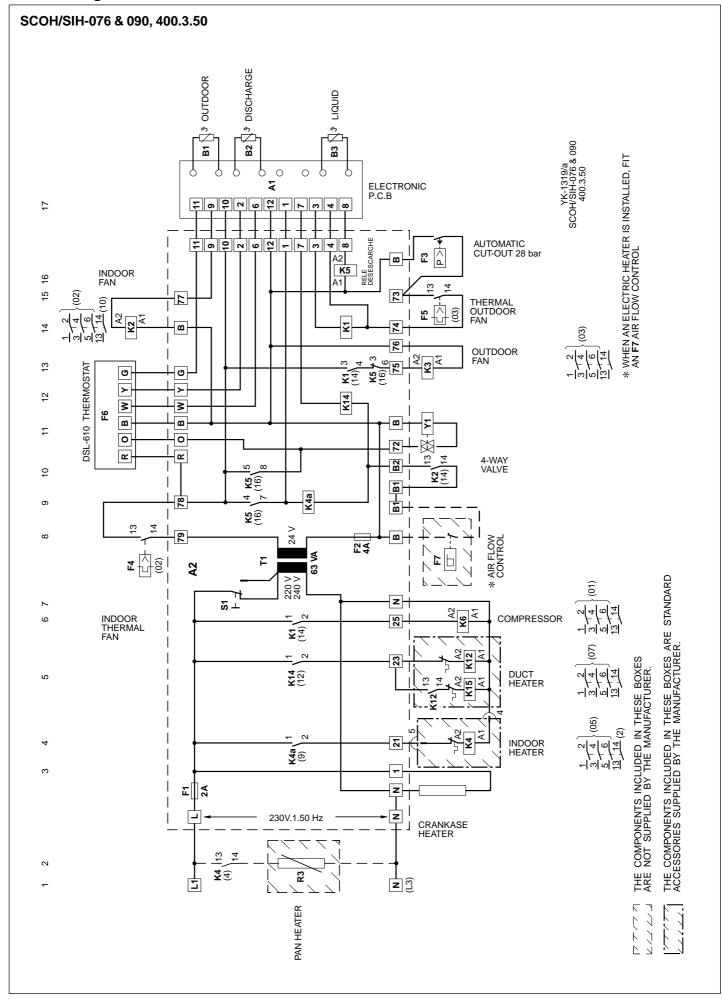
General dimensions mm

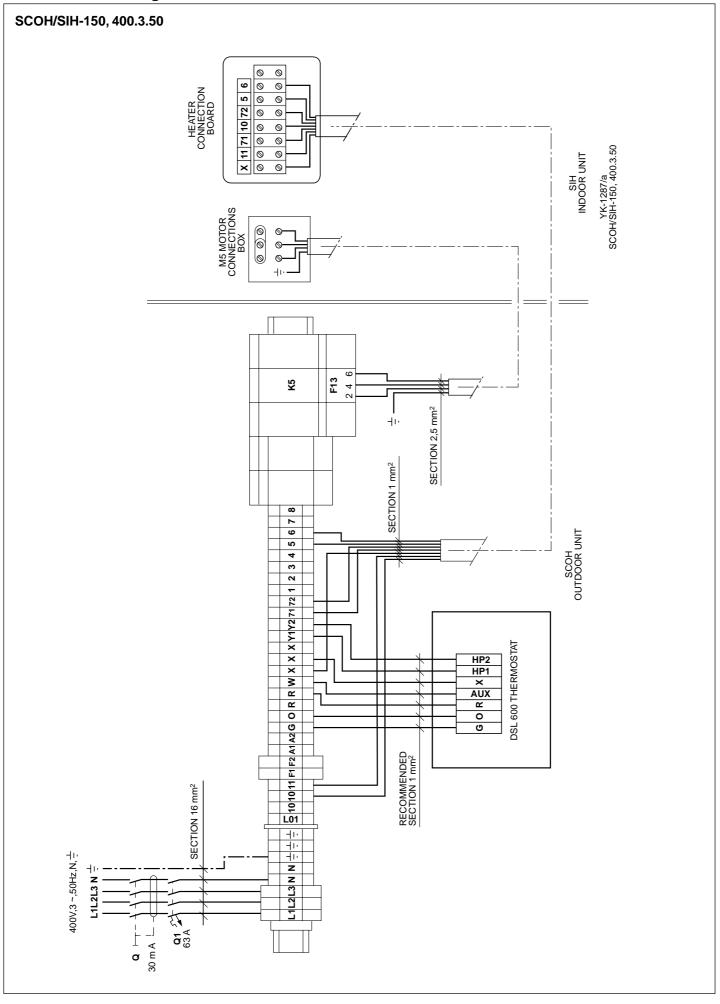


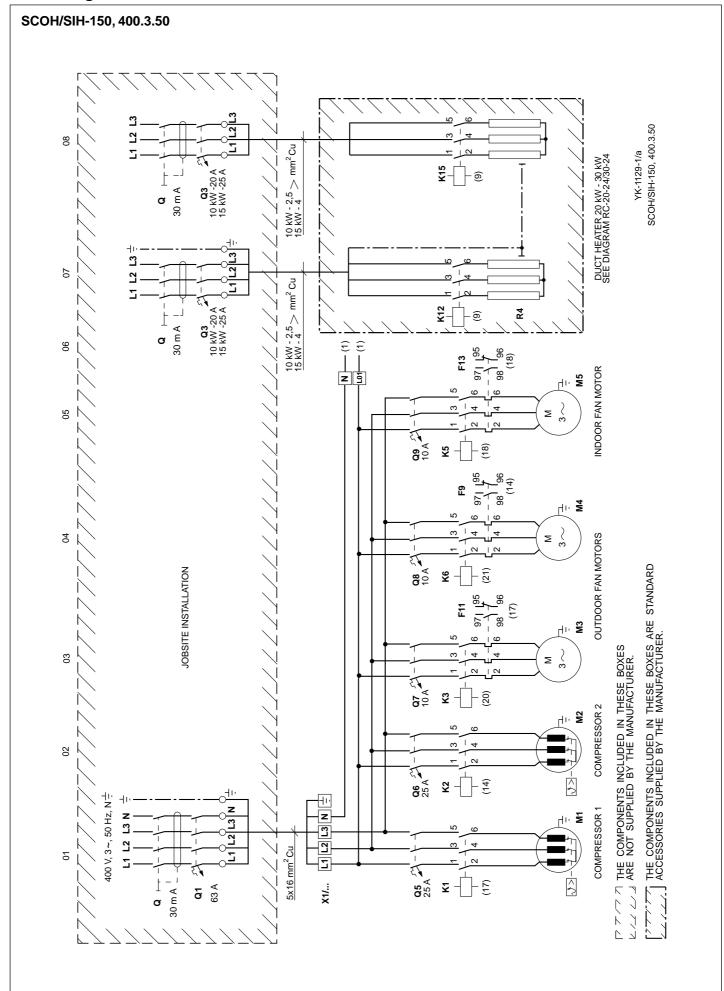

General dimensions mm

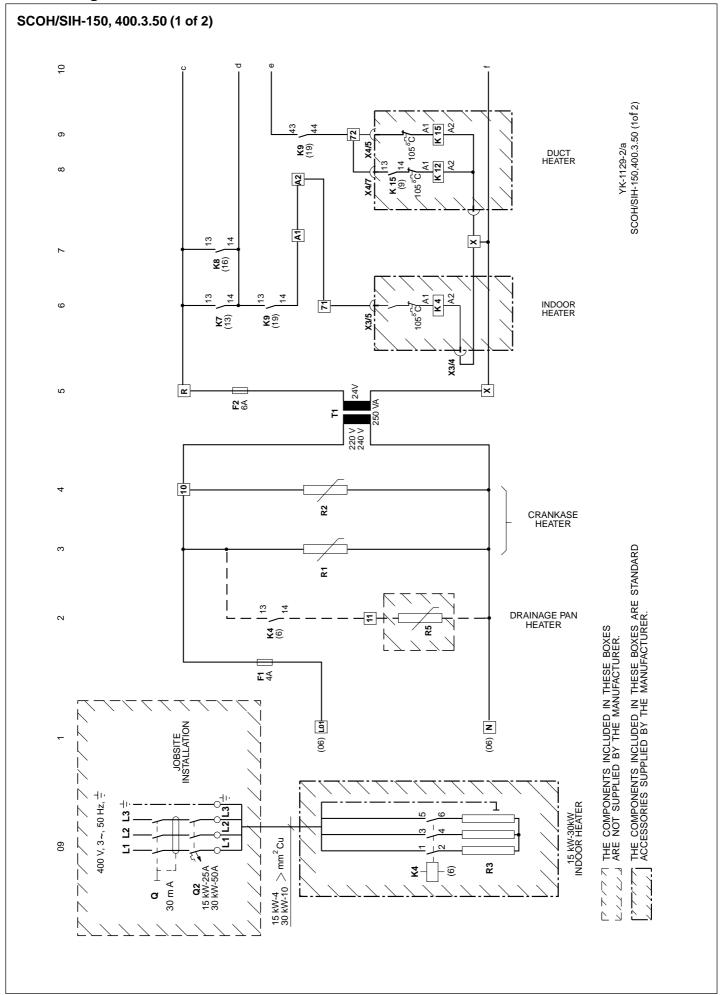


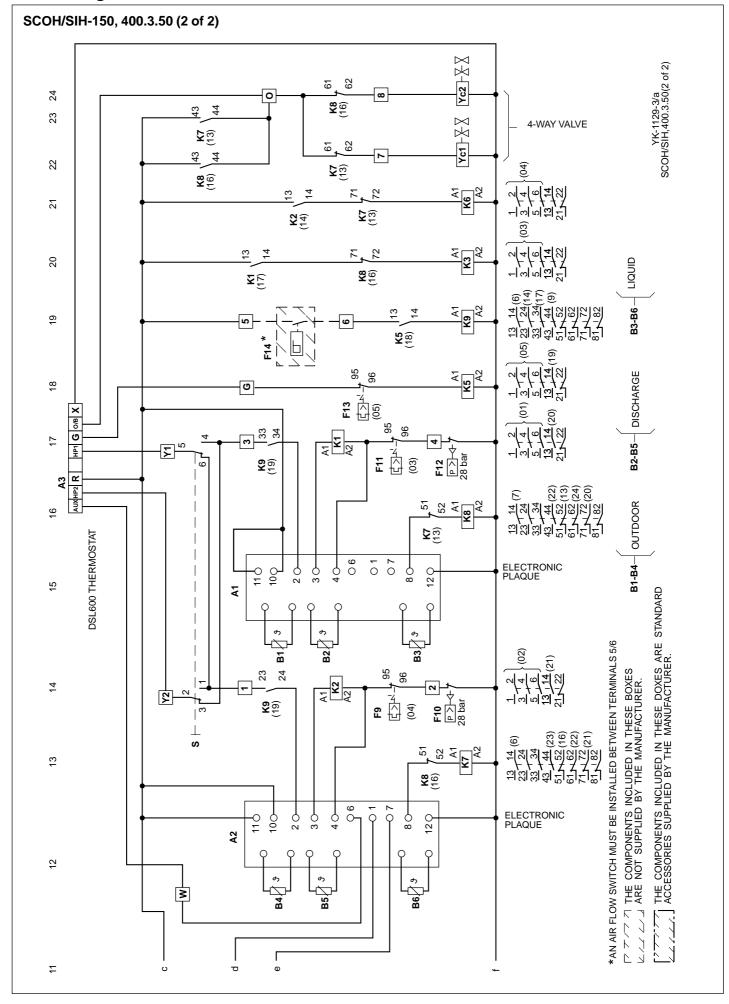

General dimensions mm

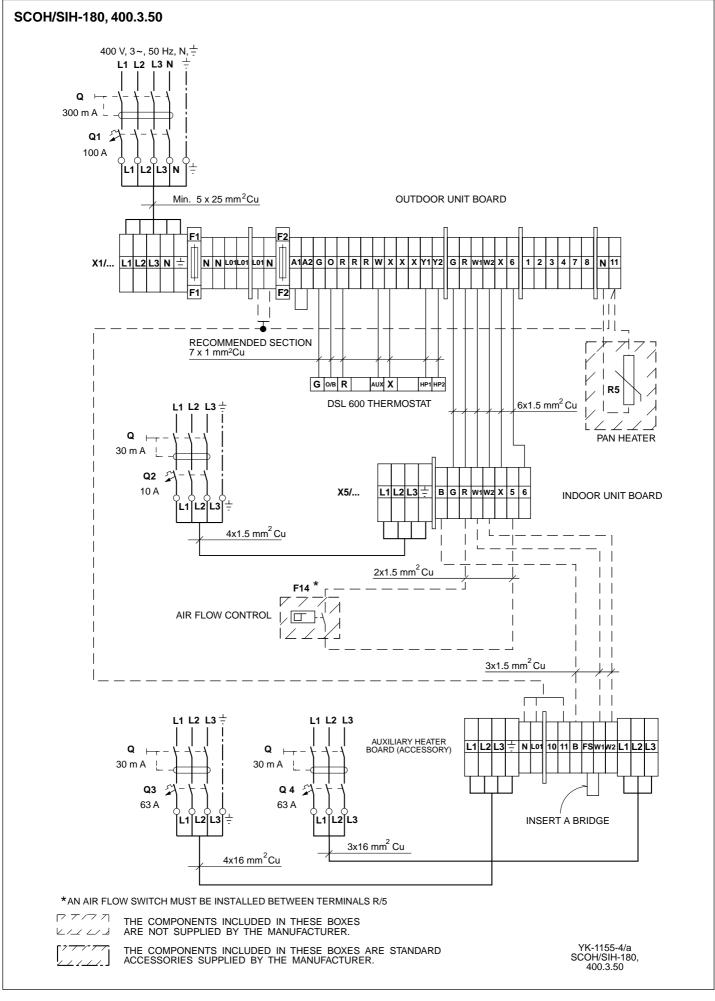


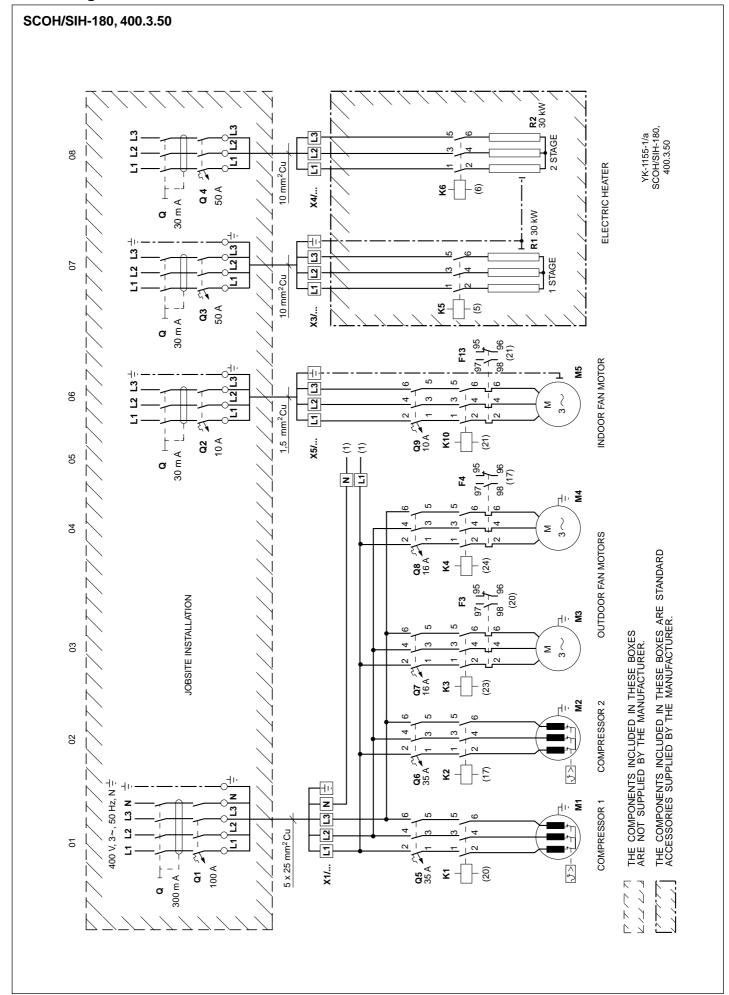

Field connection diagram

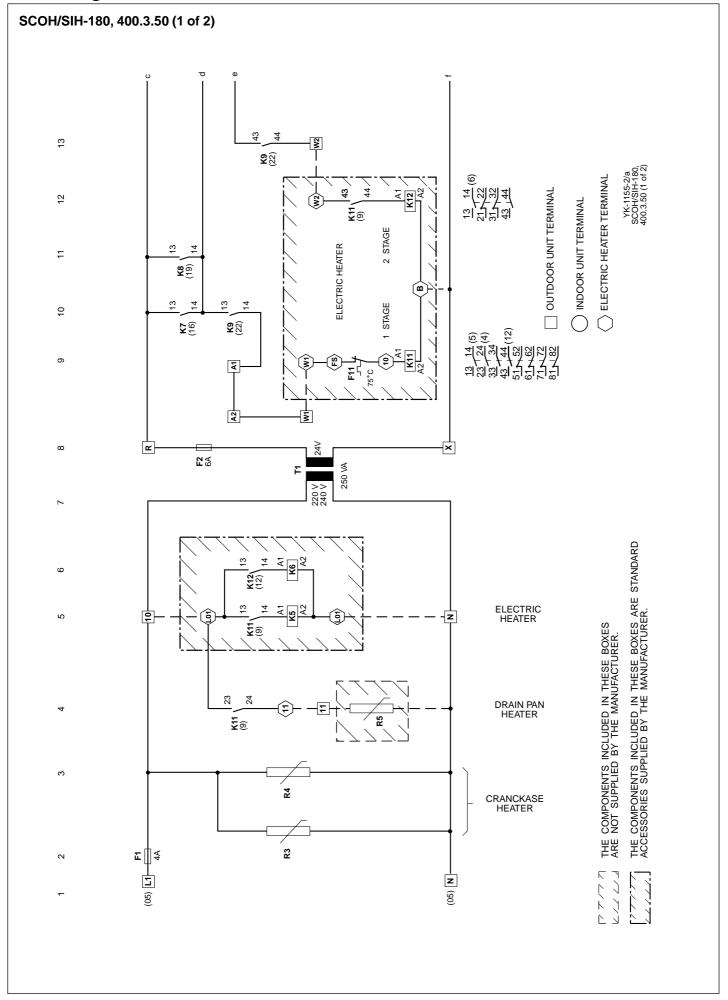


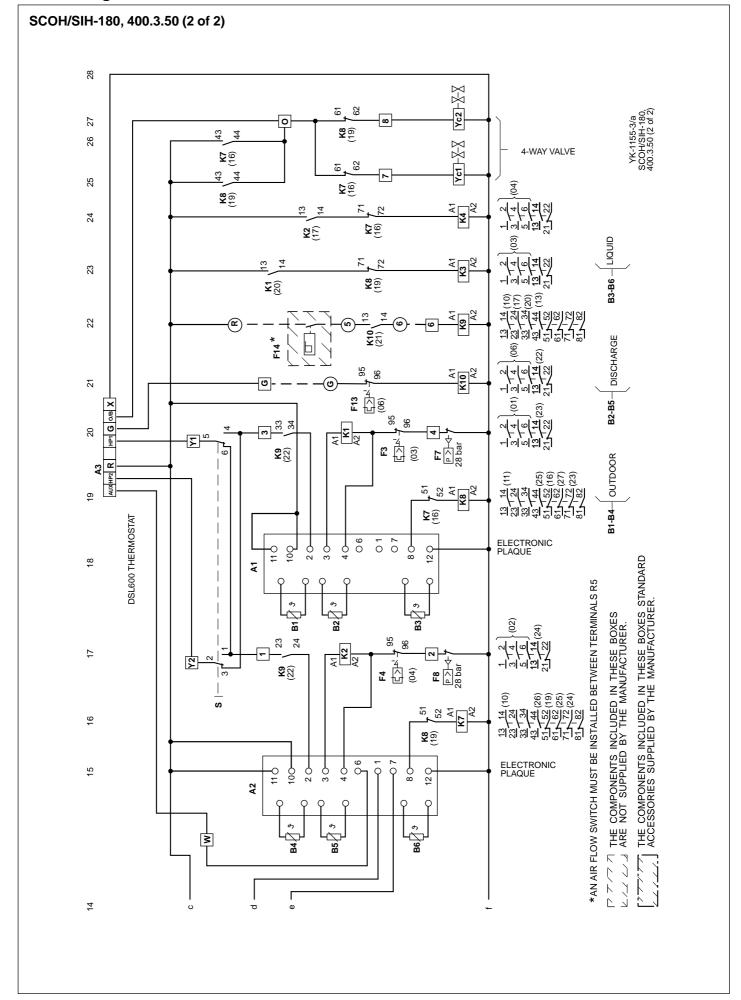


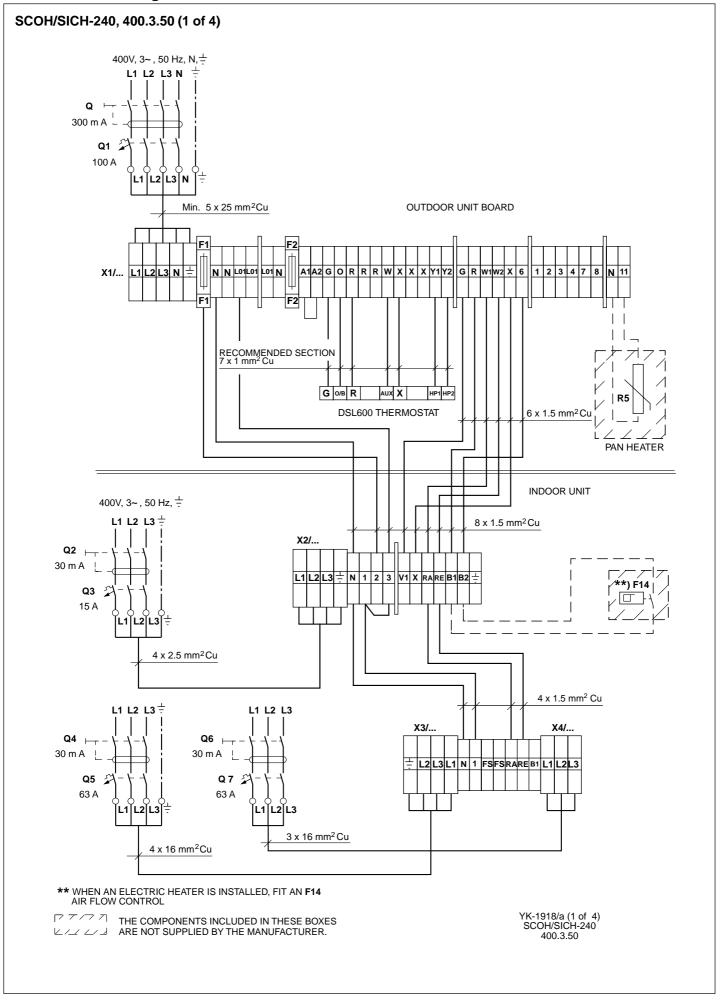


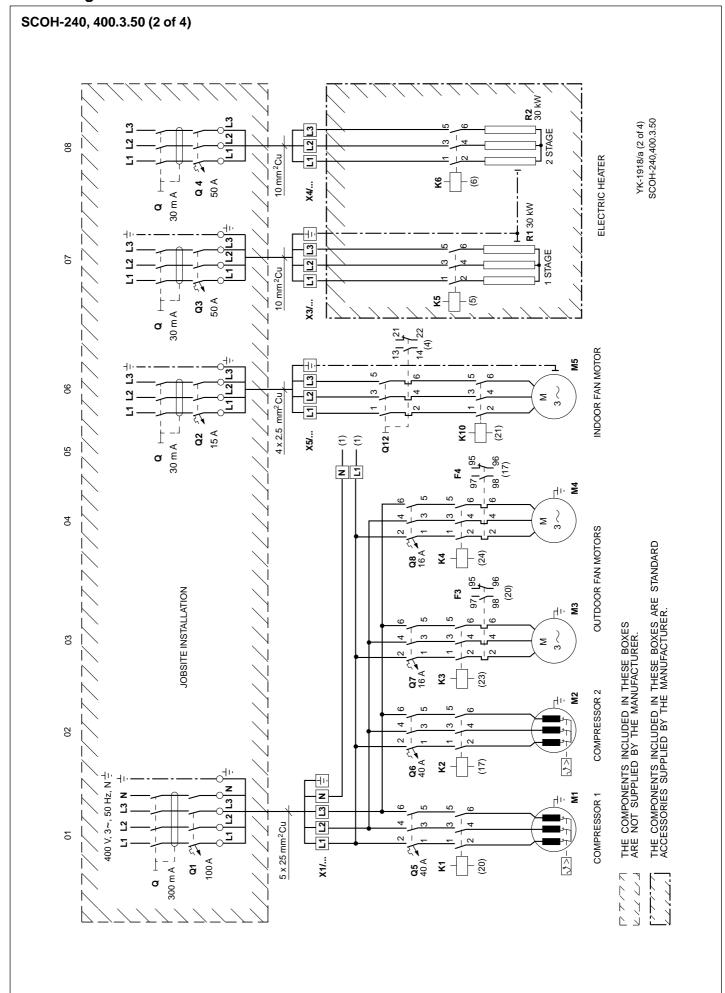


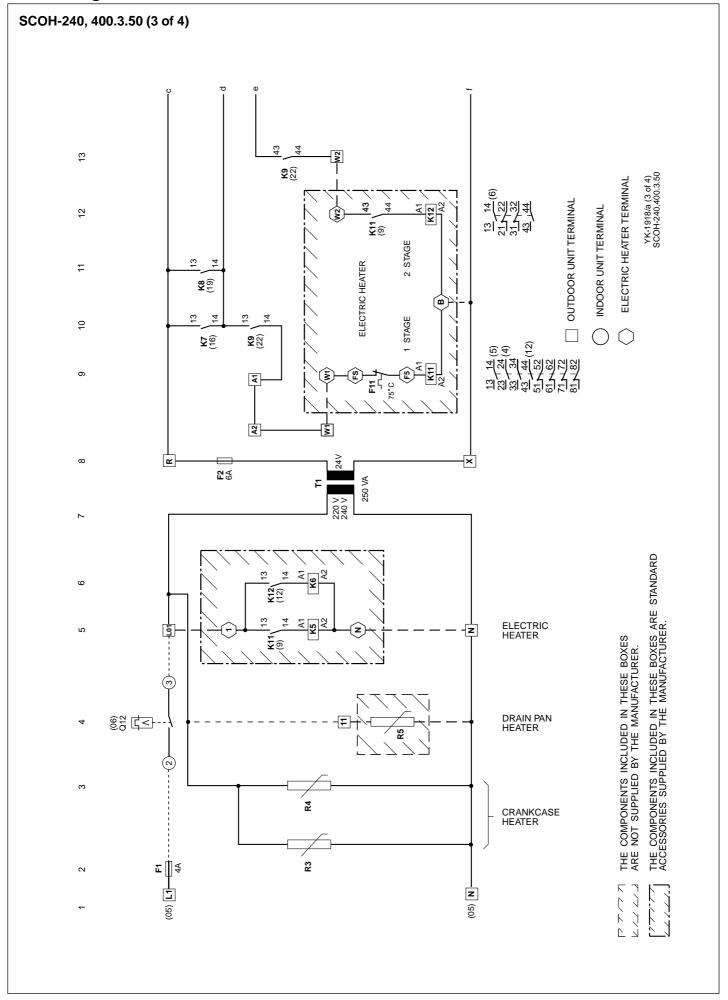


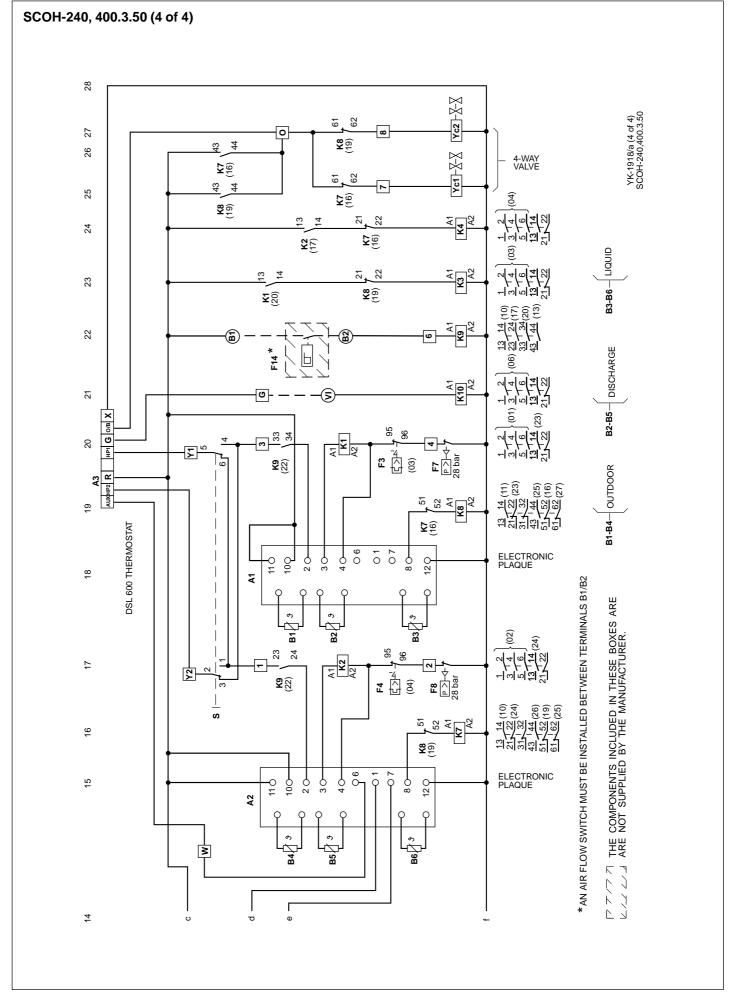


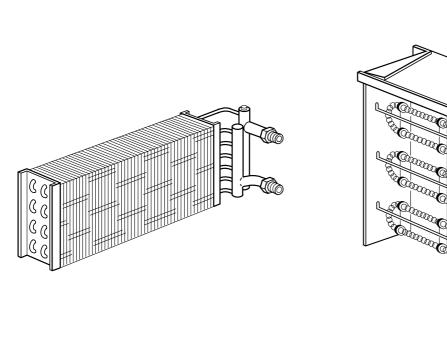


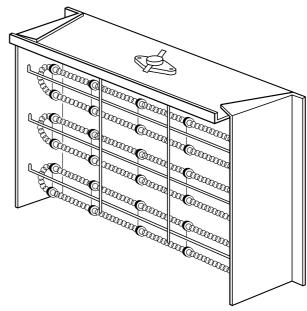


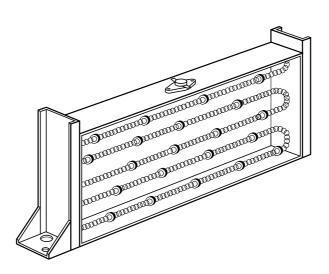











Optional accessories for heat pump models SCOH/SIH

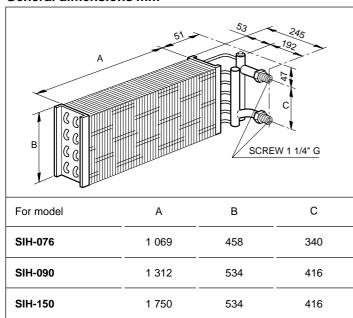
Hot water heater for SIH-076, 090 & 150

Indoor electric heater for SIH-076, 090 & 150

Indoor electric heater for SIH-180

Table of standard accessories

A						
Accessory			076	090	150	180
Electric heater for model	SIH-076	10 kW	X			
Electric heater for model	SIH-76	15 kW	X			
Electric heater for model	SIH-090	10 kW		Х		
Electric heater for model	SIH-090	20 kW		Х		
Electric heater for model	SIH-150	15 kW			Х	
Electric heater for model	SIH-150	30 kW			Х	
Electric heater for model	SIH-180	60 kW				X
Hot water coil for model	SIH-076		Х			
Hot water coil for model	SIH-090			X		
Hot water coil for model	SIH-150				Х	
Transformation kit vertical for model	SIH-180					X


Hot water coil for SIH-076, 090 & 150

Made of copper tubes and aluminium fins.

Designed to fit inside the conditioner on galvanised steel supports.

Equipped with a 1/8" air purge.

General dimensions mm

Physical data

For model	SIH-076	SIH-090	SIH-150
Tubes depth	2	2	2
Tubes height	16	19	19
Fins/inch	12	12	12
Surface area m²	0.49	0.70	0.93
Tubes diameter	3/8"	3/8"	3/8"
Entry/outlet GAS male thread connections	1 1/4"	1 ¹ / ₄ "	1 1/4"

Heating capacity

For model	Nominal	flow-rate	Heating capacity (*)	Charge circ	
For model	m³/h	m³/s	kW	mm WG	Pa
SIH-076	5 130	1.42	40.7	3.9	38.2
SIH-090	7 500	2.08	59.3	4.4	43.0
SIH-150	10 000	2.77	79.1	4.4	43.0

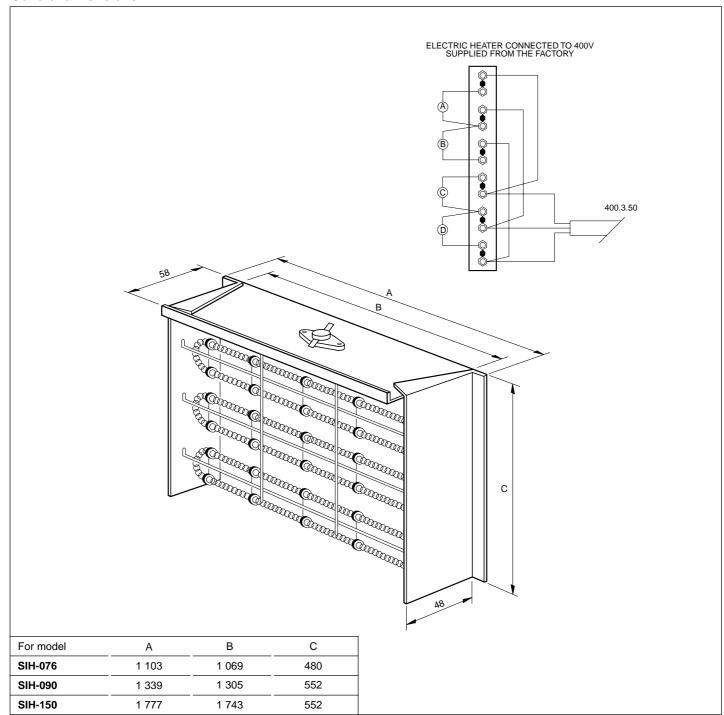
^{*} The heating capacities given in this table are valid for water temperatures of 90°C at entry, 80°C at outlet and air entry at 13°C. For different conditions apply the correction factors from the relevant table.

Correction factors for the heating capacities of the hot water heating coil

These correction factors are for water intake and outlet temperatures and air entry different from the nominal ones.

Air	Temperature °C water entry/outlet							
tempe- rature	75/65	85/75	90/80	85/70	90/75	90/70		
-10	1.03	1.23	1.33	1.13	1.24	1.14		
-5	0.97	1.16	1.28	1.07	1.17	1.08		
0	0.91	1.09	1.19	1.00	1.10	1.01		
5	0.85	1.02	1.12	0.94	1.03	0.95		
10	0.79	0.95	1.04	0.88	0.96	0.89		
13	0.75	0.91	1.00	0.84	0.92	0.85		
15	0.73	0.88	0.97	0.82	0.90	0.83		
20	0.68	0.82	0.90	0.76	0.83	0.77		
25	0.60	0.74	0.83	0.68	0.75	0.69		

Capacity correction in the water circuit of the hot water coil


Hot water flow-rate												
m³/h	1.00	1.30	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	6.00	7.00
l/s	0.28	0.36	0.42	0.56	0.69	0.83	0.97	1.11	1.25	1.39	1.67	1.94
m WG		0.08	0.10	0.17	0.24	0.33	0.42	0.48				
kPa		0.78	0.98	1.66	2.35	3.23	4.11	4.70				
m WG	-			0.13	0.20	0.27	0.36	0.46	0.54	0.66		
kPa				1.27	1.96	2.64	3.52	4.50	5.28	6.46		
m WG	•		-		0.25	0.34	0.45	0.57	0.68	0.82	1.17	1.50
kPa	•				2.44	3.33	4.40	5.58	6.66	8.03	11.45	14.68
	m WG kPa m WG kPa m WG	m WG kPa m WG kPa m WG wWG	I/s 0.28 0.36 m WG 0.08 kPa 0.78 m WG kPa m WG m WG	I/s 0.28 0.36 0.42 m WG 0.08 0.10 kPa 0.78 0.98 m WG kPa m WG	m³/h 1.00 1.30 1.50 2.00 l/s 0.28 0.36 0.42 0.56 m WG 0.08 0.10 0.17 kPa 0.78 0.98 1.66 m WG 0.13 kPa 1.27 m WG 1.27	m³/h 1.00 1.30 1.50 2.00 2.50 l/s 0.28 0.36 0.42 0.56 0.69 m WG 0.08 0.10 0.17 0.24 kPa 0.78 0.98 1.66 2.35 m WG 0.13 0.20 kPa 1.27 1.96 m WG 0.25	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 l/s 0.28 0.36 0.42 0.56 0.69 0.83 m WG 0.08 0.10 0.17 0.24 0.33 kPa 0.78 0.98 1.66 2.35 3.23 m WG 0.13 0.20 0.27 kPa 1.27 1.96 2.64 m WG 0.25 0.34	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 3.50 l/s 0.28 0.36 0.42 0.56 0.69 0.83 0.97 m WG 0.08 0.10 0.17 0.24 0.33 0.42 kPa 0.78 0.98 1.66 2.35 3.23 4.11 m WG 0.13 0.20 0.27 0.36 kPa 1.27 1.96 2.64 3.52 m WG 0.25 0.34 0.45	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 3.50 4.00 l/s 0.28 0.36 0.42 0.56 0.69 0.83 0.97 1.11 m WG 0.08 0.10 0.17 0.24 0.33 0.42 0.48 kPa 0.78 0.98 1.66 2.35 3.23 4.11 4.70 m WG 0.13 0.20 0.27 0.36 0.46 kPa 1.27 1.96 2.64 3.52 4.50 m WG 0.25 0.34 0.45 0.57	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 3.50 4.00 4.50 l/s 0.28 0.36 0.42 0.56 0.69 0.83 0.97 1.11 1.25 m WG 0.08 0.10 0.17 0.24 0.33 0.42 0.48 kPa 0.78 0.98 1.66 2.35 3.23 4.11 4.70 m WG 0.13 0.20 0.27 0.36 0.46 0.54 kPa 1.27 1.96 2.64 3.52 4.50 5.28 m WG 0.25 0.34 0.45 0.57 0.68	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 l/s 0.28 0.36 0.42 0.56 0.69 0.83 0.97 1.11 1.25 1.39 m WG 0.08 0.10 0.17 0.24 0.33 0.42 0.48	m³/h 1.00 1.30 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 6.00 l/s 0.28 0.36 0.42 0.56 0.69 0.83 0.97 1.11 1.25 1.39 1.67 m WG 0.08 0.10 0.17 0.24 0.33 0.42 0.48

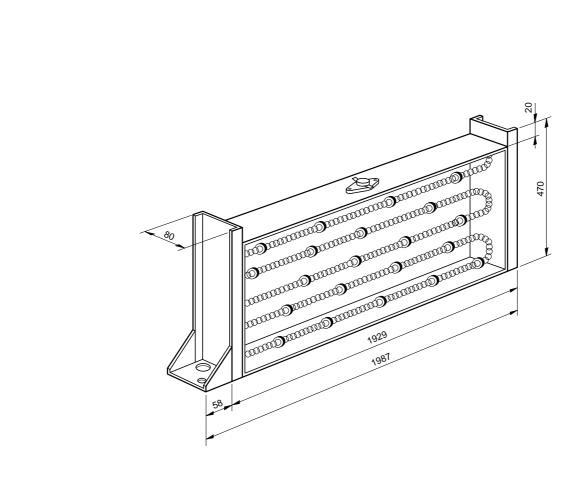
Indoor electric heater for SIH-076, 090 & 150

Made of chrome-nickel air-exposed wires on soapstone supports and with a galvanised sheet steel frame designed to fit inside the unit. It is supplied with a thermal protector which disconnects the control circuit if it detects an abnormally high temperature.

This heater must function always with the air current provided by the indoor unit and the placings, or relays to achieve this end must be calculated. It is necessary to fit an air flow-rate control (see electrical diagrams).

General dimensions mm

For model	Nominal power kW	Power supply V.ph.Hz	N⁰ of stages	Packaged dimensions mm
•	10		-	
SIH-076	15			1 200 x 550 x 125
SIH-090	10	400.3.50		1 440 × 620 × 125
SIH-090	20	400.3.30	ı	1 440 x 620 x 125
SIH-150	15	1 92		1 920 x 620 x 125
3IN-130	30			1 320 X 020 X 120


Electric indoor heater for SIH-180

This 60 kW electric heater operates in two stages of 30 kW each; the first is used as an auxiliary heater and the second as an emergency one.

It is made of air-exposed chrome-nickel wires on soapstone supports and with galvanised sheet steel frame designed to fit inside the unit. It is supplied with a thermal protector which disconnects the control circuit when it detects an abnormally high temperature.

This heater has to function always with the current of air provided by the indoor unit, so that the placements, or relays to achieve this end must be calculated. It is necessary to fit an air flow-rate control (see electrical diagrams).

General dimensions mm

Characteristics

For model	Nominal capacity kW	Power supply V.ph.Hz	Nº of stages	Packaged dimensions mm
SIH-180	60	400.3.50	2	510 x 2 405 x 165

All data subject to change without notice.

DEFINITIVE SHUTDOWN, DISASSEMBLY & DESTRUCTION

This product includes a refrigerant gas under pressure, moving parts and electric components which may be dangerous and cause injury!

All sevicing must be done by qualified personnel, wearing protective clothing, in compliance with applicable safety rules.

Risk of electrocution

Remote-controlled unit May start up unexpectedly

- 1. Cut off all electric power-supplies from the unit, as well as from the power supply of the control systems running it. Make sure that all electric cut-off devices are blocked in open position and the town-gas supply valves are in closed position. The power-supply wires and gas pipes may then be disassembled and removed. Consult the technical documentation in order to ascertain the unit's connection points.
- 2. Transfer all refrigerant from each system component to an appropriate recipient, or use a specially-designed recovery unit. The refrigerant can then be re-used or returned to the manufacturer for destruction/recycling, depending on the case. It is strictly forbidden to discharge the refrigerant into the atmosphere. Depending on the case. drain the refrigerant oil from each system into an appropriate recipient and eliminate it in accordance with local applicable regulations relative to hydrocarbon waste products.
- 3. As a general rule, the solid-block units are to be disassembled and removed in a single piece. Remove all fastening bolts and then raise the items with handling equipment with appropriate lifting capacity. It is absolutely essential to consult the information in the technical documentation as regards the weight and recommended handling procedures. The residual refrigerant oil and spills are to be sponged up and eliminated according to instructions given above.
- 4. After disassembly, the system components are to be destroyed/drained/put in a recycling dump in accordance with local applicable regulations.

E-TEC-S 0005

Manufacturer reserves the right to change specifications witthout prioir notice

York, Europe

對YORK®